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The dynamical theory of x-ray diffraction and the coupled-wave theory for modeling diffraction of light from
periodic structures are two equivalent theories but with incompatibilities, as they were developed independently
along two parallel directions in history. Here we reformulate the two theories into a universal Fourier coupled-wave
diffraction theory (FCWDT), in which the fundamental coupled-wave equations for almost all practical diffraction
geometry can always be written as a straightforward eigenvalue equation that is easily solvable by standard
mathematical procedures. Since it removes most of the approximations and complexities in the two conventional
theories, the FCWDT is almost rigorous yet simple and, in principle, can be used to compute scattering of
electromagnetic waves from any kinds of periodic (nonmagnetic) structures, including x-ray diffraction from
crystals and soft x-ray and light diffraction from periodic multilayers, gratings, and photonic crystals.
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I. INTRODUCTION

The dynamical theory is a well-established theory for mod-
eling x-ray diffraction from single crystals [1,2]. In parallel,
researchers have been developing the coupled-wave theory for
computing diffraction of light from periodic photonic crystals
(mainly planar gratings; see, e.g., [3–6]). In principle, the two
theories are equivalent since they both treat the interactions
of electromagnetic waves with periodical structures based on
Fourier analyses of Maxwell’s equations. The only major
difference is that the interaction of short-wavelength x rays
with crystals is a weak scattering process, compared to the
usually strong scattering effect of long-wavelength light from
periodically modulated media. Consequently, x-ray diffraction
usually activates one or at most a few noticeable Bragg
reflections simultaneously (called the two-beam and multiple-
beam diffraction processes, respectively) [1,7,8], while light
scattering from high-contrast photonic crystals may involve
a large number of diffraction orders. Nevertheless, photonic
crystal diffraction is largely equivalent to multiple-beam x-ray
crystal diffraction, and it should be possible to model them
with the same theory.

Unfortunately, the dynamical theory in history has adopted
an unnecessarily different choice, i.e., the electric displace-
ment D has been chosen as the basic variable for solving
Maxwell’s equations. This choice was based on the transversal-
ity condition ∇ · D ≡ 0 that can simplify Maxwell’s equation.
However, since the boundary conditions at the surfaces and
interfaces are based on the continuity of the tangential
components of the electric field E and the magnetic field
H, in the dynamical theory one has to convert the D fields
into E and H fields to solve the boundary equations [1,8],
which is inconvenient and, at the same time, leads to a
number of unnecessary approximations that may be valid
only for weak scattering. Most significantly, these different
formulas make the dynamical theory incompatible with the
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coupled-wave theory that is naturally based on E and H
fields [4,5]. Due to these incompatibilities, it is not uncommon
that many well-established x-ray diffraction mechanisms
(including computational methods) are little known or have
been “reinvented” with considerable efforts in the optical
society, and vice versa.

The main purpose of this paper is to rewrite the dynamical
theory and coupled-wave theory in a uniform yet simple
format. We call the revised theory the Fourier coupled-wave
diffraction theory (FCWDT), from which one will see that
the fundamental principles and formulas of the two theories
are indeed identical. Hence, the reformulated FCWDT not
only bridges the two parallel fields so as to allow the sharing
and exchanging of ideas with each other, but also provides a
universal framework for modeling and computing diffraction
of all kinds of electromagnetic waves from any periodic
structures. Since it is derived solely from Maxwell’s equations
without assumptions, the FCWDT removes almost all of the
approximations as well as most (extreme) complexities of both
the conventional coupled-wave theory and dynamical theory.
Therefore, it is rigorous and may have numerous applications
for the design and development of the related optical devices.

This paper is mainly structured as follows. We start
illustrating the FCWDT in Sec. II with the simplest case
of coplanar two-beam diffraction for transverse-electric (TE)
waves (together with the boundary conditions and the pos-
sible wave merging problem), followed by the treatments of
general multiple-beam TE coplanar diffraction. In a similar
way, we describe the FCWDT for coplanar diffraction of
transverse-magnetic (TM) waves in Sec. III. Afterwards, the
FCWDT treatments of general N -beam diffraction from three-
dimensional (3D) periodic structures are given in Sec. IV.

II. COPLANAR DIFFRACTION FOR TE POLARIZATION

A. Two-beam asymmetric diffraction

We start by solving Maxwell’s equations of monochromatic
waves in nonmagnetic media (with the magnetic permeability
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FIG. 1. Two-beam coplanar diffraction from a parallel-sided
plate. x̂, ŷ, and ẑ are unit vectors along the orthogonal x, y, and
z axes, respectively.

μ ≡ 1):

∇ × E = −iKH, (1)

∇ × H = iKεE, (2)

where ε is the permittivity, K = 2π/λ, and λ is the wavelength
in free space (in c.g.s. units). Consider two-beam diffraction
(involving the incident beam and only one strong diffracted
beam [1,2]) from a parallel (photonic) crystal plate of thickness
τ in Fig. 1. Above the plate, the incident, specularly reflected
and diffracted waves are ẼI exp(−iK0 · r), ẼR

0 exp(−iKR
0 · r),

and ẼR
g exp(−iKR

g · r), respectively. Below the plate exist
a forward transmitted wave ẼT

0 exp(−iKT
0 · r) and another

diffracted wave ẼT
g exp(−iKT

g · r). Inside the plate, there
are a set of eigenmodes in the form E0 exp(−ik0 · r) +
Eg exp(−ikg · r), where kg = k0 + g, and g is the diffraction
vector. (Here we omit the common harmonic time factor of the
waves.) Note that for the two-beam case, only one of the two
diffracted waves ẼR,T

g may have strong intensity, depending
on the Bragg reflection or Laue transmission geometry [1,2].

Since coplanar diffraction is the most commonly used
geometry, we first discuss this configuration in Fig. 1, where
the diffraction vector g and all the wave vectors are parallel to
the xz plane. In terms of the incidence angle θ0, the incident
wave vector is

K0 = K0x x̂ + K0zẑ = K cos θ0 x̂ + K sin θ0 ẑ. (3)

Accordingly, the specularly reflected wave vector is KR
0 =

K0x x̂ − K0zẑ. Inside the plate, we may write k0 as

k0 = k0x x̂ + pẑ, (4)

where k0x ≡ K0x due to the continuity of the tangential
wave-vector components across the surface. This also leads to
KT

0 = K0 (because |KT
0 | = K). Similarly, since kg , KR

g , and
KT

g must have the same tangential component, we have

kg = k0 + g = kgx x̂ + (p + gz)ẑ,
(5)

kgx = KT
gx = KR

gx = k0x + gx.

For elastic scattering, the vertical components of KT
g and KR

g

are

KT
gz = −KR

gz =
{√

�g if �g � 0

−i
√−�g otherwise,

(6)

where �g = K2 − k2
gx . Here, if �g < 0, the external diffracted

waves ẼR,T
g exp(−iKR,T

g · r) become evanescent waves. The

exit angle is θg = cos−1(kgx/K) if �g > 0. (If there is a
homogeneous substrate with permittivity εs �= 1 below the
bottom surface, KT

0z and KT
gz should be modified based on

|KT
0,g|2 = εsK

2.) Based on the known incident wave vector
K0, we can thus determine all the external wave vectors and
the tangential components of the internal wave vectors. The
remaining task is to determine p and the wave amplitudes.

The TE-polarization waves (also called the σ -polarization
waves in x-ray diffraction; E‖ŷ in Fig. 1) satisfy ∇ · E = 0.
Taking the curl of Eq. (1) and using Eq. (2) and ∇ · E = 0, we
obtain

∇2E(r) = −K2ε(r)E(r). (7)

This is the equation that needs to be solved. For a periodic
structure, the periodically modulated permittivity ε(r) can be
expanded as a Fourier series,

ε(r) =
∑

εm exp(−igm · r), (8)

with

εm = 
−1
∫




ε(r) exp(igm · r)dr (9)

for general photonic crystals, where 
 is the volume of the unit
cell and gm is any reciprocal lattice vector. For the specific
cases of x-ray diffraction, the crystal susceptibility is χ =
ε − 1, which leads to εm = χm for m �= 0 and ε0 = 1 + χ0.
Here the χm’s (proportional to the structure factors) are the
Fourier coefficients of χ used in the dynamical theory [1,2].
For periodic multilayers and one-dimensional (1D) gratings,
εm = (1/d)

∫ d

0 ε(Z) exp(igmZ)dZ, where d is the period of the
structure, gm = 2πm/d (with m being the diffraction order),
and the Z axis is perpendicular to the layers [9]. The TE electric
field in the plate can also be expanded as a plane-wave series,

E(r) = ŷ
∑

Em exp(−ikm · r), (10)

where km = k0 + gm. Inserting Eqs. (8) and (10) into Eq. (7)
yields the general coupled-wave equations for TE polarization:

k2
mEm = K2

∑
n

εm−nEn. (11)

For the two-beam case in Fig. 1 with only one diffraction
vector g, Eq. (11) reduces to

k2
0E0 = K2ε0E0 + K2εgEg, (12)

k2
gEg = K2εgE0 + K2ε0Eg, (13)

where g = −g. Equations (12) and (13) can be treated as
an eigenvalue system (see Sec. II C), but here, for readers
familiar with the conventional x-ray dynamical theory, we
directly solve their secular equation (also called the dispersion-
surface equation [1,2])(

K2ε0 − k2
0

)(
K2ε0 − k2

g

) = K4εgεg. (14)

Based on Eqs. (4) and (5), this equation can be written as

p4 + 2gzp
3 + a2p

2 + 2gza1p + a0 = 0, (15)

where a0 = k2
0x(B − k2

0x) − K2Bε0 + K4(ε2
0 − εgεg), a1 =

k2
0x − K2ε0, a2 = B − 2K2ε0, and B = k2

0x + k2
gx + g2

z .
Equation (15) has four complex roots pı (ı = 1,2,3,4) that may
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be analytically solved [10]. Here we sort the four roots such
that Im(p1,2) < 0 and Im(p3,4) > 0. Each root corresponds to
an eigenmode E

(ı)
0 ŷ[exp(−ik(ı)

0 · r) + rı exp(−ik(ı)
g · r)] in the

plate, where k(ı)
0 = k0x x̂ + pı ẑ and k(ı)

g = kgx x̂ + k(ı)
gz ẑ with

k(ı)
gz = pı + gz. Meanwhile, the wave amplitude ratio is deter-

mined by rı = E(ı)
g /E

(ı)
0 = [−ε0 + (k(ı)

0 )2/K2]/εg according
to Eq. (12).

According to Eq. (1), the magnetic field of a plane wave
E exp(−ik · r) is simply H exp(−ik · r), with H = k × E/K .
Then, based on the calculated pı , k(ı)

gz , and rı , the tangential
magnetic amplitudes of each eigenmode in the crystal can
be derived as H

(ı)
0x = −s

(ı)
0 E

(ı)
0 /K and H (ı)

gx = −s(ı)
g E

(ı)
0 /K ,

where s
(ı)
0 = pı and s(ı)

g = rık
(ı)
gz . Hence, the continuity of the

tangential electric and magnetic fields across the two surfaces
in Fig. 1 gives

ẼI + ẼR
0 = ∑

E
(ı)
0 , K0z

(
ẼI − ẼR

0

) = ∑
s

(ı)
0 E

(ı)
0 ,

ẼR
g = ∑

rıE
(ı)
0 , −KT

gzẼ
R
g = ∑

s(ı)
g E

(ı)
0 ,

(16)
�0Ẽ

T
0 = ∑

φ
(ı)
0 E

(ı)
0 , K0z�0Ẽ

T
0 = ∑

s
(ı)
0 φ

(ı)
0 E

(ı)
0 ,

�gẼ
T
g = ∑

rıφ
(ı)
g E

(ı)
0 , KT

gz�gẼ
T
g = ∑

s(ı)
g φ(ı)

g E
(ı)
0 ,

where all the summations are over ı = 1,2,3,4, φ
(ı)
0 =

exp(−ipıτ ), φ(ı)
g = φ

(ı)
0 exp(−igzτ ), �0 = exp(−iK0zτ ), and

�g = exp(−iKT
gzτ ). For thick lossy (absorbing) structures,

φ
(3)
0 and φ

(4)
0 may cause numerical inaccuracy or overflow.

To avoid this problem, one may replace φ
(ı)
0 E

(ı)
0 with E (ı)

0 in
the last four equations and replace E

(ı)
0 with E (ı)

0 exp(ipıτ ) in
the first four equations for ı = 3,4 to change Eqs. (16) into
equations about eight unknowns, ẼR

0 , ẼR
g , ẼR

g , ẼT
g , E

(1)
0 , E

(2)
0 ,

E (3)
0 , and E (4)

0 [11]. Here, E (3)
0 and E (4)

0 are the wave amplitudes
at the bottom surface. For lossy structures, such treatments are
almost always necessary to avoid numerical instability (for all
the following cases).

After Eqs. (16) are solved, the two diffraction efficiency
values are Rg = |b||ẼR

g /ẼI |2 and Tg = |b||ẼT
g /ẼI |2 (for

�g > 0), where |b| = KT
gz/K0z is the asymmetry factor.

The specular reflectivity is R0 = |ẼR
0 /ẼI |2 and the forward

transmissivity is T0 = |ẼT
0 /ẼI |2. These formulas are valid

for both Bragg reflection and Laue transmission cases. For
the Bragg case of a semi-infinite lossy plate (τ → ∞), the
eigenmodes ı = 3,4 may be ignored, and one can calculate Rg

and R0 from the first four equations of Eqs. (16) [11].
For x-ray diffraction from single crystals, the above simple

FCWDT gives exactly the same results as the method described
in [10] for any TE coplanar two-beam diffraction, including
grazing-incidence and grazing-exit diffraction and backward
diffraction (with the Bragg angle θB � 90◦). The advantage
of this method is that it is only based on the E and H
fields without the complication of the D fields and the
associated approximations. Therefore, this method is within
the framework of the coupled-wave theory for general optics
and can be seamlessly extended also for modeling diffraction
from periodic multilayers, gratings, and photonic crystals.

B. Symmetric Bragg reflection

In fact, from the extensive studies in the literature, the
coupled-wave theory, which is consistent with the above
FCWDT, has been demonstrated to be accurate for 1D gratings
(e.g., see [12] and the supplemental material). The other way to
theoretically prove the FCWDT is to compare it with Parratt’s
method [13] (or the transfer-matrix method [14]) for on-axis
periodic multilayer structures.

As shown in Fig. 2(a), we consider a binary periodic
multilayer with the refractive indices of the two sublayers
being na and nb, respectively. We study the weak-contrast
condition |�n| 
 n = (na + nb)/2, where �n = na − nb. In
Fig. 2(c), the solid curve RP is the reflectivity calculated by
Parratt’s recursion method [13] in the entire angular range 0 <

θ0 � 90◦. For most of the incidence angles θ0, the multilayer
acts as a homogeneous etalon with an average refractive index
n, so most of the fringes are due to the interference between the
waves specularly reflected from the upper and lower surfaces
(see [14], p. 360). But near the Bragg angle θB = 57.4◦, strong
diffraction occurs. Here, with the strong refraction effect taken
into account, the Bragg equation is 2d(n2 − cos2 θB)1/2 = λ.

To use the FCWDT to calculate the reflectivity, one imme-
diately encounters a problem. The above FCWDT considers
the specularly reflected wave ẼR

0 and the Bragg diffracted
wave ẼR

g separately, which yields two reflectivity values R0

and Rg . However, for the symmetric reflection in Fig. 2(a)
(with gx = 0), ẼR

0 and ẼR
g merge into a single plane wave due

to KR
0 ≡ KR

g (and the ẼT
g and ẼT

0 waves also merge together).
Then which reflectivity value in the FCWDT corresponds to
RP for the symmetric case?

Figure 2(b) shows the specular reflectivity R0 and the Bragg
reflectivity Rg calculated by the FCWDT with the boundary
conditions of Eqs. (16). Near the Bragg peak, R0 and Rg both
deviate significantly from RP . Here one may wonder if the
combined reflectivity is R0 + Rg [3], but the R0 + Rg curve
in Fig. 2(b) still noticeably differs from RP . [We have also
tried to calculate the reflectivity using R = |ẼR

0 + ẼR
g |2/|ẼI |2,

but this is obviously incorrect since R may exceed unity (not
shown).]

The correct way to solve this problem is to merge ẼR
g (ẼT

g )
into ẼR

0 (ẼT
0 ) in the boundary equations (16). Then, Eqs. (16)

for the symmetric case become

ẼI + ẼR
0 = ∑

(1 + rı)E
(ı)
0 ,

K0z

(
ẼI − ẼR

0

) = ∑(
s

(ı)
0 + s(ı)

g

)
E

(ı)
0 ,

(17)
�gẼ

T
0 = ∑(

φ
(ı)
0 + rıφ

(ı)
g

)
E

(ı)
0 ,

K0z�gẼ
T
0 = ∑(

s
(ı)
0 φ

(ı)
0 + s(ı)

g φ(ı)
g

)
E

(ı)
0 .

However, Eqs. (17) can contain only four unknowns, while
we have six unknowns, ẼR

0 , ẼT
0 , and E

(ı)
0 (ı = 1,2,3,4), to

solve. To overcome this difficulty, we rearrange the four
roots of Eq. (15) in the order Re(p3) < Re(p1,2) < Re(p4).
Afterwards, it can be proved that k(1)

0 and k(2)
0 are very

close to k0, where k0 is the average refracted wave vector
in a homogenous plate with refractive index n. This in-
dicates that the corresponding eigenmodes E

(ı)
0 exp(−ik(ı)

0 ·
r) + E(ı)

g exp(−ik(ı)
g · r) (for ı = 1,2) are the two regular

eigenmodes treated in the classical dynamical theory [1,2].
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HUANG, PENG, HÖNNICKE, AND GOG PHYSICAL REVIEW A 87, 063828 (2013)

FIG. 2. (Color online) (a) Schematic of symmetric Bragg reflection from a periodic binary multilayer. (b) Comparison of the Parratt
reflectivity (RP ) with the three reflectivity curves calculated from the FCWDT with the four-eigenmode boundary conditions of Eqs. (16).
(c) Comparison of RP with the reflectivity calculated from the two-eigenmode boundary conditions of Eqs. (17). na = 1.51, nb = 1.49,
M = 100, and the incident wavelength is always λ = 1.12d . TE polarization of two-beam coplanar diffraction.

The third eigenmode has the properties r3 = E(3)
g /E

(3)
0 �

0 (corresponding to E(3)
g � 0) and k(3)

0 � k0 + g, i.e., this

eigenmode virtually has only one wave E
(3)
0 exp(−ik(3)

0 · r),
which represents internal specular reflection of waves
E

(1,2)
0 exp(−ik(1,2)

0 · r) from the bottom surface. For the sym-
metric case in Fig. 2(a), E(3)

0 exp(−ik(3)
0 · r) in fact merges into

the two diffracted waves, E(1,2)
g exp(−ik(1,2)

g · r). Therefore,
the third eigenmode must be removed from Eqs. (17).
Similarly, the fourth eigenmode has the properties E

(4)
0 �

0 (since |r4| � 1) and k(4)
g � k0, and the remaining wave

E(4)
g exp(−ik(4)

g · r) represents internal specular reflection of

waves E(1,2)
g exp(−ik(1,2)

0 · r) from the top surface. For the
symmetric geometry, since E(4)

g exp(−ik(4)
g · r) merges into

waves E
(1,2)
0 exp(−ik(1,2)

0 · r), the fourth eigenmode should
also be removed from Eqs. (17).

Equations (17) now have only four unknowns, ẼR
0 , ẼT

0 ,
E

(1)
0 , and E

(2)
0 (i.e., all the summations are over ı = 1,2),

that can be solved. The dotted line in Fig. 2(c) shows
the reflectivity R

sym

F = |ẼR
0 /ẼI |2 calculated from Eqs. (17)

with the two eigenmodes ı = 1,2. Surprisingly, R
sym

F almost
perfectly agrees with RP in the entire range 0 < θ0 < 90◦,
which clearly demonstrates the validity of the FCWDT
even when Bragg diffraction is mixed with strong specular
reflection. In addition to the large refractive index n = 1.5
(compared with |n − 1| ∼ 10−4 for hard x-ray diffraction),
the refractive index contrast �n = 0.02 in Fig. 2 is also
much larger than that for x-ray diffraction (�n ∼ 10−5). We
have chosen these parameters in order to demonstrate that the
FCWDT is applicable not only to x-ray diffraction, but also to
light (and soft x-ray) diffraction from multilayers and photonic
crystals.

To our knowledge, the wave merging (degeneration) prob-
lem has been overlooked in the literature. However, it may be
unavoidable in 2D or 3D photonic crystal diffraction involving
both symmetric and asymmetric diffraction vectors simultane-
ously (see Fig. 3), where Parratt’s method is inapplicable. In
fact, for 2D and 3D diffraction, wave merging occurs whenever
two of the involved diffraction vectors have the same tangential
components (with respect to the plate surfaces). Here we
have illustrated some clues about how to overcome this
difficulty.

For asymmetric diffraction, since the diffracted waves are
separated from the specularly reflected (and forward refracted
and/or transmitted) waves both inside and outside the plate, the
boundary conditions of Eqs. (16) are rigorous for two-beam
diffraction. As an example, Fig. 2(c) also shows the Bragg
reflectivity curve Rg calculated with Eqs. (16) under the
condition that the multilayer structure in Fig. 2(a) is offcut
by an angle ϕ = 1◦ (see Fig. 1). Without the mixing of
specular reflection, the Bragg diffraction here gives a well-
defined Bragg peak with much cleaner background compared
with that for the symmetric case ϕ = 0. This is one of the

FIG. 3. (Color online) The treatment of the nonplanar grating
(a) as a 2D photonic crystal (b) but with a thickness M = 1 in the
FCWDT. The surface profile of the unit cell can be of arbitrary shape.
a and b are the lattice constants.
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many advantages of (dispersive) asymmetric multilayers or
gratings [9].

Note that for symmetric x-ray crystal diffraction, Eqs. (17)
and (16) lead to virtually the same results because x-ray
specular reflection is negligible in nongrazing geometry.
Thus, for x-ray diffraction, one may almost always use
Eqs. (16) without the necessity to differentiate symmetric
and asymmetric configurations. For multilayer diffraction,
however, it is safer to use Eqs. (17) (or simply Parratt’s method)
for symmetric reflection.

C. N-beam coplanar diffraction of TE polarization

If the periodic structure has high contrast �n, retaining
higher diffraction orders in the FCWDT may become neces-
sary. For the coplanar diffraction geometry, extension of the
above FCWDT to the N -beam cases is convenient. In Fig. 1,
consider the situation that N diffraction orders are retained
with the diffraction vectors all parallel to the xz plane. We
write them as g0, g1, . . . , gN−1, where g0 = 0 and N > 1.
Based on Eq. (4), each internal diffracted vector can be written
as km = (k0x + gmx)x̂ + (p + gmz)ẑ, which leads to

k2
m = (k0x + gmx)2 + g2

mz + 2gmzp + p2. (18)

Based on this equation, Eqs. (11) can be written as an
eigenvalue equation:

(p2 I − pV σ + Uσ )E = 0, (19)

where E = (E0,E1, . . . ,EN−1)T is a column vector about the
internal wave amplitudes, I is the N × N identity matrix, V σ

is a diagonal matrix with V σ
m,m = −2gmz, and Uσ is a matrix

with off-diagonal elements Uσ
m,n = −K2εm−n (for m �= n) and

diagonal elements Uσ
m,m = (k0x + gmx)2 + g2

mz − K2ε0. Here
the indices (m,n) of the matrix elements are also from 0 to
N − 1, and all the elements are known. Equation (19) now
has the same form as Eq. (10) in Ref. [7]. So one can use the
simple and elegant method in the appendix of [7] to obtain
2N eigenvalues pı and the corresponding 2N eigenvectors
E(ı) (ı = 1,2, . . . ,2N ), i.e., the eigenvalues pı of Eq. (19) are
actually the eigenvalues of the 2N × 2N eigenequation(

V σ −Uσ

I O

)
X = pX, (20)

where O is the N × N null matrix, and X is a column vector
with 2N elements. The elements of each eigenvector E(ı)

for Eq. (19) are the first N elements of the corresponding
eigenvector X(ı) obtained from Eq. (20).

Meanwhile, each diffraction vector gm induces a diffracted
wave ẼR

m exp(−KR
m · r) above the plate and another diffracted

wave ẼT
m exp(−KT

m · r) below the plate in Fig. 1, where KR
m

and KT
m can be obtained from Eqs. (5) and (6) with the

corresponding gm. For the asymmetric geometry in Fig. 1,
the boundary conditions about the continuity of the tangential
E and H fields at the upper and lower surfaces can be written as
4N linear equations about the unknowns ẼR

m , ẼT
m, E(ı)

0 (for m =
0,1, . . . ,N − 1 and ı = 1,2, . . . ,2N ), and their solutions then
determine all the diffraction properties. However, if any two
diffraction vectors have the same x components (gmx = gnx

for m �= n), then some of the associated waves merge together.
Therefore, the corresponding eigenmodes should be removed

from the boundary equations. Particularly for the symmetric
configuration of periodic multilayers (ϕ = 0, so gmx ≡ 0),
the 2N eigenvectors from Eq. (19) always degenerate into
only two eigenvectors due to KR

0 = KR
1 = · · · = KR

N−1 and
KT

0 = KT
1 = · · · = KT

N−1, similar to the above two-beam case.
Consequently, the boundary conditions reduce to four linear
equations about ẼR

0 , ẼT
0 , E

(1)
0 , and E

(2)
0 , similar to Eqs. (17).

Note that for a 1D periodic grating with the lattice planes
perpendicular to the surfaces in Fig. 1 (ϕ = 90◦), we have
gmz ≡ 0 and V σ = O. Then, Eq. (19) reduces to a standard
eigenvalue equation

(p2 I + Uσ )E = 0 (21)

in terms of p2. This simpler case has been well studied in
the literature (see [4] for details as well as the boundary
equations). However, Eq. (19) is more general since it is also
valid and accurate for TE-polarization diffraction from any
oblique periodic gratings and multilayers (even with extremely
high contrast), except that the surfaces must be flat (i.e., planar
gratings). Moreover, Eq. (19) only requires that all the gm

vectors be parallel to the xz plane in Fig. 1, but not necessarily
parallel to each other (see [15] for such a case of TE coplanar
multiple-beam x-ray diffraction).

In the literature, the coupled-wave theory was developed
mainly for 1D planar periodic structures, but here Eq. (19) can
also be used to compute diffraction of slanted gratings [16]
and in-plane scattering of 2D photonic crystals. For example,
the nonplanar surface-relief grating [17,18] in Fig. 3(a) may
be treated as a 2D photonic crystal in Fig. 3(b). In this case,
the eigenequation of Eq. (19) must also include the diffraction
vectors that have z components. After the eigenmodes of the
2D system are solved, one can set the thickness of the 2D
crystal back to τ = b (M = 1) in the boundary equations
to obtain the diffraction properties of the original grating.
Compared with the complicated conventional treatments in
which the arbitrary-profile grating is usually approximated
by a stack of thin laminae ([18,19] and references therein),
the treatment in Fig. 3 is simpler and more accurate without
suffering from absorption-induced numerical overflow or
instability in the boundary equations. The convergence speed
may also be much faster.

III. TM POLARIZATION

A. Two-beam coplanar diffraction

Except for TE coplanar diffraction, generally ∇ · E �= 0
in inhomogeneous media, which makes Eq. (7) invalid.
Fortunately, we have the universal transversality condition of
the magnetic field: ∇ · H ≡ 0. Now we rewrite Eq. (2) as
ε−1∇ × H = iKE. Taking the curl of this equation and using
Eq. (1), we obtain

∇ × [ε−1(r)∇ × H(r)] = K2H(r), (22)

which is always valid (including TE polarization). For coplanar
diffraction of TM polarization (also called π polarization in
x-ray diffraction) in Fig. 1, the magnetic field in the plate can
be written as

H(r) = ŷ
∑

Hm exp(−ikm · r). (23)
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FIG. 4. (Color online) Repeated calculations of the Parratt reflectivity (RP ) and the FCWDT Bragg reflectivity based on the diffraction
configuration and parameters of Fig. 2(c) but for TM polarization of two-beam coplanar diffraction.

Meanwhile, the Fourier expansion of ε−1 is

ε−1(r) =
∑

ζm exp(−igm · r). (24)

Compared with Eq. (9), here

ζm = 
−1
∫




1

ε(r)
exp(igm · r)dr. (25)

For x-ray diffraction from crystals, ε−1 = (1 + χ )−1 � 1 −
χ gives ζm = −χm for m �= 0 and ζ0 = 1 − χ0. Inserting
Eqs. (23) and (24) into Eq. (22), we obtain the coupled-wave
equations for TM polarization:

K2Hm =
∑

n

ζm−n(km · kn)Hn. (26)

For the two-beam coplanar case in Fig. 1 with H‖ŷ, we write
the external waves as H̃ I exp(−iK0 · r), H̃R

0 exp(−iKR
0 · r),

H̃R
g exp(−iKR

g · r), H̃ T
0 exp(−iK0 · r), and H̃ T

g exp(−iKT
g · r).

The internal waves are H0 exp(−ik0 · r) and Hg exp(−ikg · r).
Now, Eqs. (26) reduce to

K2H0 = ζ0k
2
0H0 + ζg(k0 · kg)Hg, (27)

K2Hg = ζg(k0 · kg)H0 + ζ0k
2
gHg. (28)

The secular equation of Eqs. (27) and (28) is(
ζ0k

2
0 − K2

)(
ζ0k

2
g − K2

) = ζgζg(k0 · kg)2, (29)

which can also be written in the form of Eq. (15), but the
coefficients become a0 = [ζ 2

0 k2
0x(B − k2

0x) − K2Bζ0 + K4 −
ζgζgk

2
0xk

2
gx]/C, a1 = (k2

0xζ
2
0 − K2ζ0 − ζgζgk0xkgx)/C, a2 =

[Bζ 2
0 − 2K2ζ0 − ζgζg(2k0xkgx + g2

z )]/C, B = k2
0x + k2

gx + g2
z ,

and C = ζ 2
0 − ζgζg for TM polarization. Similarly, we can

obtain four complex roots pı from Eq. (15). Each root corre-
sponds to an eigenmode H

(ı)
0 [exp(−ik(ı)

0 · r) + rı exp(−ik(ı)
g ·

r)]ŷ in the plate with the amplitude ratio being rı =
H (ı)

g /H
(ı)
0 = [K2 − (k(ı)

0 )2ζ0]/[ζg(K0xkgx + pık
(ı)
gz )] according

to Eq. (27).
In order to use the boundary conditions, we have to derive

the E field of each H wave. For the external waves (satisfying
ε = 1 and K · Ẽ = 0), we have Ẽ = −K × H̃ according to
either Eq. (1) or Eq. (2), where K is the wave vector of the

external H̃ wave. But as mentioned above, ∇ · E �= 0 inside
the plate. So the conversion of the internal fields H to E must
use the Fourier transformation of Eq. (2),

E(ı)
m = − 1

K

∑
n

ζm−nk(ı)
n × H(ı)

n . (30)

This equation indicates that E(ı)
m not only depends on H(ı)

m , but
is also related to all the other amplitudes in the eigenmode.
Applying Eq. (30), one may prove that for the two-beam
TM-polarization case, the tangential components of the
internal E amplitudes can be written as E

(ı)
0x = s

(ı)
0 H

(ı)
0 /K

and E(ı)
gx = s(ı)

g H
(ı)
0 /K with s

(ı)
0 = ζ0pı + ζgk

(ı)
gzrı and s(ı)

g =
ζgpı + ζ0k

(ı)
gzrı . Afterwards, the boundary conditions for TM

polarization have the same forms as Eqs. (16) or (17) except
that the E and Ẽ amplitudes in Eqs. (16) or (17) are replaced
by the H and H̃ amplitudes, respectively. Meanwhile, the
parameters pı , k(ı)

gz , rı , s
(ı)
0 , and s(ı)

g in Eqs. (16) or (17)
should adopt the current values for TM polarization. After the
boundary equations are solved, we obtain R0 = |H̃R

0 /H̃ I |2,
Rg = |b||H̃R

g /H̃ I |2, T0 = |H̃ T
0 /H̃ I |2, and Tg = |b||H̃ T

g /H̃ I |2
with |b| = KT

gz/K0z. For x-ray diffraction from crystals, we
have tested that these formulas give exactly the same results
as the method described in [20].

Based on the same parameters in Fig. 2(c), we have repeated
the calculations of the Parratt reflectivity RP and the FCWDT
reflectivity R

sym

F in Fig. 4 for symmetric TM-polarization
reflection. Again R

sym

F almost perfectly agrees with RP in
the entire angular range 0 < θ0 < 90◦. Here the suppression of
specular reflection around θ0 = 34◦ is due to k0 · (k0 + g) � 0,
where k0 · (k0 + g) is equivalent to the TM-polarization factor
used in the classical dynamical theory [1,2]. The Rg curve for
asymmetric diffraction (ϕ = 1◦) in Fig. 4 shows a Bragg peak
surrounded by slight fringes due to the finite plate thickness,
similar to that in Fig. 2(c).

B. N-beam coplanar diffraction of TM polarization

The above two-beam TM coplanar diffraction formulation
can also be extended to the N -beam case for diffraction of
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high-contrast multilayers and in-plane scattering of 2D pho-
tonic crystals. Consider an N -beam TM coplanar diffraction
process involving diffraction vectors g0 (=0), g1, . . . , gN−1

(N > 1) that are all parallel to the xz plane in Fig. 1. Based
on Eqs. (5), we have km · kn = kmxknx + gmzgnz + (gmz +
gnz)p + p2. Then, Eqs. (26) for the N -beam case can again be
written as an eigenvalue equation,

(p2 I − pV π + Uπ )H = 0, (31)

with H = (H0,H1, . . . ,HN−1)T , which is similar to Eq. (19)
except that here matrix V π with elements V π

m,n =
−ζm−n(gmz + gnz) is not a diagonal matrix. The elements
of matrix Uπ are Uπ

m,n = ζm−n(kmxknx + gmzgnz) − K2δmn,
where δmn is the Kronecker δ (δmn = 0 for m �= n and δmm =
1). Similar to Eqs. (19) and (20), Eq. (31) can give 2N sets
of eigenvalues pı and eigenvectors H(ı) (for ı = 1,2, . . . ,2N ).
Afterwards, one may derive the internal electric fields from
Eq. (30) and use the boundary conditions to determine
the strengths of the eigenvectors and the external wave
amplitudes. Similar to TE polarization, wave merging occurs
when different diffraction vectors have the same tangential
components.

For 1D grating structures with ϕ = 90◦ (Fig. 1), we have
gmz ≡ 0 and V π = O. Then Eq. (31) is simplified to a standard
eigenvalue equation

(p2 I + Uπ )H = 0 (32)

about p2. Although this equation has the same form as Eq. (21),
numerical computations of TM-polarization diffraction of
high-contrast gratings (particularly metallic gratings) usually
converge much slower than that of TE polarization (thus
requiring a large number of diffraction orders). Due to
this problem, the TM case has been extensively studied in
the literature with various improved algorithms (see, e.g.,
[5,21,22]), but Eq. (32) remains the fundamental equation. The
intense studies of metallic gratings for TM polarization have
been motivated also by a variety of novel fascinating plasmonic
properties of the gratings found in recent years [11,12,23–25].

IV. GENERAL N-BEAM DIFFRACTION FOR 2D AND 3D
PERIODIC STRUCTURES

To model general N -beam diffraction from 3D (photonic)
crystals, let us consider the diffraction vector g in Fig. 1 as
any of the involved diffraction vectors gm (m �= 0), but gm is
not necessarily parallel to the xz plane. We write the incident
wave as H̃I exp(−iK0 · r) (with K0 · H̃I = 0). The external
diffracted waves corresponding to each diffraction vector gm

are H̃R
m exp(−iKR

m · r) and H̃T
m exp(−iKT

m · r) above and below
the plate, respectively, where m = 0,1, . . . ,N − 1 and g0 = 0.
Here all the external wave vectors have the same magnitude,
K = 2π/λ. We write the internal waves as Hm exp(−ikm · r),
where km = k0 + gm, k0 = k0x x̂ + k0y ŷ + pẑ, and p is to be
determined. Based on the continuity of the tangential wave-
vector components across the surfaces, we have

km = kmx x̂ + kmy ŷ + (p + gmz)ẑ,

kmx = KT
mx = KR

mx = K0x + gmx,

kmy = KT
my = KR

my = K0y + gmy,

FIG. 5. (Color online) Out-of-plane diffraction from the 2D
photonic crystal (invariant with z). All the diffraction vectors gm

are parallel to the xy plane, but the incident wave vector K0 has an
out-of-plane component, K0z �= 0.

KT
mz = −KR

mz =
{√

�m if �m � 0

−i
√−�m otherwise,

(33)

where �m = K2 − k2
mx − k2

my . Here, if two different diffrac-
tion vectors satisfy gmx = gnx and gmy = gny (but with gmz �=
gnz), we have KR,T

m = KR,T
n , which corresponds to wave

merging.
Next, inserting the 3D Fourier expansion H(r) =∑
Hm exp(−ikm · r) and Eq. (24) into Eq. (22) leads to the

general coupled-wave equations

K2Hm = −
∑

n

ζm−nkm × (kn × Hn). (34)

These are vector equations, so we can project each of them onto
the x, y, and z axes to obtain three scalar equations. However,
it can be strictly proved that only two of the three scalar
equations are independent due to the transversality condition
km · Hm = 0.

A simplified case of general N -beam diffraction is the out-
of-plane diffraction from 2D photonic crystals shown in Fig. 5
[26], where the diffraction vectors are always parallel to the
xy plane, i.e., they all satisfy gmz = 0 and kmz = p. Under
this condition, projecting Eq. (34) onto the x and y axes and
replacing Hmz with −(kmxHmx + kmyHmy)/p, one can find that
the terms p in the denominators are automatically canceled
by the corresponding numerators. Then we directly obtain a
standard eigenvalue equation

(p2W + U)H = 0 (35)

about p2, where H=(H0x,H0y,H1x,H1y, . . . ,HN−1,x ,HN−1,y)T

and W is a 2N × 2N matrix with elements

W2m,2n = W2m+1,2n+1 = ζm−n,

W2m,2n+1 = W2m+1,2n = 0. (36)

The elements of matrix U are

U2m,2n = ζm−n

(
kmykny + k2

nx

) − K2δmn,

U2m,2n+1 = ζm−n(−kmyknx + knxkny),
(37)

U2m+1,2n = ζm−n(−kmxkny + knxkny),

U2m+1,2n+1 = ζm−n

(
kmxknx + k2

ny

) − K2δmn.

Here it is worth emphasizing that W and U are 2N × 2N

matrices, compared with the N × N matrices in Eqs. (21) and
(32). Now from Eq. (35) we can obtain 4N sets of eigen-
values pı and eigenvectors H(ı) (ı = 1,2, . . . ,4N ). For each
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eigenvector, the corresponding pı then completely determines
the internal wave vectors from Eq. (33). The magnetic field
of each internal wave is H(ı)

m = H (ı)
mx x̂ + H (ı)

my ŷ − ẑ(kmxH
(ı)
mx +

kmyH
(ı)
my)/pı . The electric fields of each eigenmode must be

derived from Eq. (30). Subsequently, the eigenmode strengths
and the external wave amplitudes H̃R,T

mx and H̃R,T
my can be

calculated from 8N boundary equations about the continuity
of the magnetic and electric vectors along the x and y

axes. Afterwards, the z components of the external waves
are H̃R,T

mz = −(KR,T
mx H̃R,T

mx + KR,T
my H̃R,T

my )/KR,T
mz . By setting

|H̃I | = 1, one finally obtains the diffraction efficiency values
of each diffraction order (with �m = K2 − k2

mx − k2
my >

0): Rm = (KT
mz/K0z)(|H̃R

mx |2 + |H̃R
my |2 + |H̃R

mz|2) and Tm =
(KT

mz/K0z)(|H̃ T
mx |2 + |H̃ T

my |2 + |H̃ T
mz|2).

Out-of-plane diffraction of 2D crystals in Fig. 5 does
not have the wave merging problem in Sec. II B since
different diffraction vectors always have different in-plane
components. [This is also true for 1D gratings where Eq. (21)
or (32) applies.] Hence, the above mathematical treatments
are rigorous and complete. Apparently, they also apply to
noncoplanar (conical) diffraction of 1D gratings [4].

For N -beam diffraction from 3D periodic structures, one
might choose the projections of Eq. (34) onto the y and z axes
and replace Hmx with −(kmyHmy + kmzHmz)/kmx to obtain 2N

scalar equations. These equations can be written as a quadratic
eigenequation similar to Eq. (31), but it is obvious that this
simple method fails when kmx → 0. To avoid this problem, we
use the following method that is similar to the one developed
by Stetsko and Chang for treating the E fields in x-ray multiple-
beam diffraction [8]. We project Eq. (34) onto the x and y axes
to obtain 2N scalar equations that can be represented by two
matrix equations:

( Qz F Qz + Syy)Hx + SyxHy − Qz F QxHz = 0, (38)

SxyHx + ( Qz F Qz + Sxx)Hy − Qz F QyHz = 0, (39)

where Hx = (H0x,H1x, . . . ,HN−1,x)T , Hy = (H0y,H1y,

. . . ,HN−1,y)T , and Hz = (H0z,H1z, . . . ,HN−1,z)T . All the
other symbols in Eqs. (38) and (39) are N × N matrices,
among which Qx , Qy , and Qz are diagonal matrices with di-
agonal elements Qm,m

x = kmx , Qm,m
y = kmy , and Qm,m

z = kmz,
respectively. The elements of the other matrices are Fm,n =
ζm−n, Sm,n

xx = ζm−nkmxknx − K2δmn, Sm,n
yy = ζm−nkmykny −

K2δmn, Sm,n
xy = −ζm−nkmxkny , and Sm,n

yx = −ζm−nkmyknx .
Now we introduce two new variables,

hα = F QzHx − F QxHz, (40)

hβ = F QzHy − F QyHz, (41)

based on which Eqs. (38) and (39) become

Qzhα + SyyHx + SyxHy = 0, (42)

Qzhβ + SxyHx + SxxHy = 0. (43)

The matrix equation corresponding to the projections of
Eq. (34) onto the z axis is − Qx F QzHx − Qy F QzHy +
(Sxx + Syy + K2 I)Hz = 0, which is a linear combination of
Eqs. (38) and (39). We write this equation here for convenience
to eliminate Hz in Eqs. (40) and (41), which can be realized
by adding the product of Qx and Eq. (40) and the product of

Qy and Eq. (41) to this equation. Then we obtain

Hz = −K−2( Qxhα + Qyhβ), (44)

based on which Eqs. (40) and (41) can be rewritten as(
K−2 Q2

x − F−1
)
hα + K−2 Qx Qyhβ + QzHx = 0, (45)

K−2 Qx Qyhα + (
K−2 Q2

y − F−1
)
hβ + QzHy = 0. (46)

In terms of kmz = gmz + p, Eqs. (42), (43), (45), and (46) can
be written as a 4N × 4N eigenvalue equation

(p I4N + U4N )H4N = 0, (47)

where H4N = (hα,hβ,Hx,Hy)T , I4N is the 4N × 4N identity
matrix, and

U4N =

⎛
⎜⎜⎜⎝

Gz O Syy Syx

O Gz Sxy Sxx

K−2 Q2
x − F−1 K−2 Qx Qy Gz O

K−2 Qx Qy K−2 Q2
y − F−1 O Gz

⎞
⎟⎟⎟⎠ .

(48)

Here, Gz is a diagonal matrix with Gm,m
z = gmz (for m =

0,1, . . . ,N − 1), and O is the N × N null matrix. Note that
the elements of F−1 are actually F−1

m,n = εm−n that can also be
directly calculated from Eq. (9) without matrix inversion [5].
Equation (47) gives 4N sets of eigenvalues pı and eigenvectors
H(ı)

4N (for ı = 1,2, . . . ,4N − 1), but we are only interested in
the components H (ı)

mx and H (ı)
my (for m = 0,1, . . . ,N − 1) since

the z components of the magnetic fields may be obtained from
H (ı)

mz = −(kmxH
(ı)
mx + kmyH

(ı)
my)/(pı + gmz) due to k(ı)

m · H(ı)
m =

0. [Equivalently, one may use Eq. (44) to calculate H (ı)
mz.]

Afterwards, the treatments of the 8N boundary-condition
equations are similar to those of out-of-plane diffraction from
2D crystals.

The above formulas are strictly valid (without singularities)
for both multiple-beam x-ray crystal diffraction and 3D
photonic crystal diffraction except that the convergence of the
latter could be slow for high-contrast structures. In addition,
wave merging can occur in photonic crystal diffraction if any
two of the involved diffraction vectors have the same tangential
components. This should be specifically treated, although it is
generally unnecessary for x-ray diffraction.

V. DISCUSSION AND CONCLUSION

We have reformulated the conventional x-ray dynamical
theory and coupled-wave theory into a universal FCWDT,
of which the fundamental coupled-wave equations for almost
all practical diffraction geometry can always be written as a
simple and straightforward eigenvalue equation that may be
solved by standard mathematical procedures. The FCWDT
also removes almost all the approximations, misconceptions
or mistakes (e.g., the wave merging problem), and the extreme
complications of various conventional coupled-wave theories
(as well as x-ray dynamical theories) in the related large
literature. Therefore, the FCWDT described in this paper is
rigorous and, at the same time, easily understandable even for
beginners. It can be applied to diffraction and/or scattering
of electromagnetic waves from all kinds of (nonmagnetic)
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periodic structures, including x-ray diffraction from crystals
and soft x-ray and long-wavelength light diffraction from pe-
riodic multilayers, gratings (including nonplanar gratings with
arbitrary surface profiles; see Fig. 3), and photonic crystals.

The diffraction of electromagnetic waves from periodic
structures is rich in physics and, at the same time, is of practical
importance. Due to the difficulties and complexities of math-
ematical analyses and numerical computations, only a limited
number of specific diffraction cases have been studied in the
literature, while numerous mechanisms and the associated
applications remain unexplored. Here the universal FCWDT
may help improve this situation. For periodic structures with
relative low permittivity contrast, such as dielectric photonic
crystals, the FCWDT formulation can be readily used for fast
computation of their optical and diffraction properties. In gen-
eral, retaining only a few tens of diffraction orders can achieve
high-resolution convergence for dielectric structures. Note that
for dispersive media, the absorption is included in the complex
permittivity. Therefore, the FCWDT can automatically treat
absorption and resonant (anomalous) diffraction. For instance,
the Borrmann effect is a very famous example of two-beam
diffraction [2], which is naturally included in the formulas of
Secs. II A and III A. For highly conducting metallic structures,
however, the magnitude of the complex permittivity ε can be
extremely large for long-wavelength electromagnetic waves.
Consequently, the numerical convergence could be very slow
or difficult, particularly for 2D and 3D metallic structures.
Fortunately, the FCWDT is scalable to include an extremely
large number of diffraction orders so as to achieve, in principle,
any desired resolution. We have tested that in most cases,
retaining tens of thousands of diffraction orders in FCWDT
(which requires large computer memory and computing time)
does not cause noticeable numerical instability. Under this

condition, convergence of many metallic structures can be
reasonably achieved. On the other hand, the algorithms can be
improved by matrix manipulation and optimization or other
methods, similar to TM-polarization diffraction of 1D gratings
[5,22], to reach the same resolution with less diffraction orders
and computing time.

In fact, light scattering from metallic nano- or microstruc-
tures (e.g., plasmonic materials [25] and metamaterials [27])
has become a fascinating new frontier of science and tech-
nology in recent years. Complete understanding of the optical
properties and mechanisms of these novel materials requires
significant efforts to develop or improve the computing algo-
rithms and techniques. The FCWDT provides the fundamental
principles and formulas, based on which such developments
and improvements are possible. Once the convergence problem
is solved, the FCWDT in general can give much more reliable
and accurate results than other commonly used computing
techniques (such as the finite-difference time-domain method
[28]). Therefore, it is expected to have a wide range of
applications for exploration, modeling, design, and analyses
of novel optical devices.
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