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Photonic localization in one-dimensionak-component Fibonacci structures

R. W. Peng, Mu Wang, A. Hu, S. S. Jiang, G. J. Jin, and D. Feng
National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
and Center for Advanced Studies in Science and Technology of Microstructures, Nanjing 210093, China
(Received 15 August 1997; revised manuscript received 19 September 1997

We studied the photonic localization of one-dimensioka@lomponent Fibonacci structuréKCFS’s), in
which k different intervals are ordered according to a substitution rule. By using a transfer-matrix method, the
optical transmission through KCFS'’s is obtained. It is demonstrated that the transmission coefficient has a rich
structure, which depends on the wavelength of light and the number of different incommensurate iktervals
For the KCFS’s with an identicd{, by increasing the layer number of the sequences, more and more trans-
mission dips develop and some of them approach zero transmission, which may finally make a one-
dimensional photonic band gap. For a series of finite KCFS's, by increasing the number of different incom-
mensurate intervalk, the total transmission over the spectral region of interest decreases gradually and the
width of photonic band gap becomes larger. This property may be useful in the design of the high-performance
optical and electronic devices. As for the infinite KCFS's, the transmission coefficient is singularly continuous
and multifractal analysis is employed to characterize the transmission spectra. A dimensional spectrum of
singularities associated with the transmission spectfga) demonstrates that the light propagation in the
KCFS’s presents scaling properties and hence shows a genuine multifrag&0itys3-1828)10103-7

I. INTRODUCTION In one-dimensionallD) quasiperiodic system, one of the
well-known examples is the Fibonacci sequence. The Fi-
Since Anderson discussed the localization of electrons itbonacci sequence can be produced by repeated application of
disordered system in 195&he question of localization has the substitution ruld— AB andB— A, in which the ratio of
been one of the most actively studied subjects in condense#?e numbers of the two incommensurate intervalandB is
matter physic€. Recently, some fascinating issues haveequal to the golden mean=(\/5+1)/2. Since Merlinet al.
added fresh insight into the localization problem. First, thereported the realization of Fibonacci superlatti#®syuch
localization of states was recognized as a remarkable phettention has been paid to the exotic wave phenomena of
nomenon that stems from the wave nature of the electroni€ibonacci systems in x-ray scattering speér&? Raman
states instead of only an electronic problem. Such localizascattering spectrd?* and propagation modes of acoustic
tion is a feature related to any waves when there exists disvaves on corrugated surfaces?’ However, the localization
order in the structures, for example, it has also been reportegffect was not immediately apparent in these cases. In 1987
in acoustic wave and optical wave&? respectively. Sec- Kohmotoet al?’ suggested that a suitable system for study-
ond, the localized optical modes in certain dielectric micro-ing the photonic localization is classical electromagnetic
structures have attracted much attention both theoreticallwaves in a quasiperiodic layered medium. Later the optical
and experimentally=*® Since Yablonovitch and his co- properties between Fibonacci and random multilayers were
authors have studied the propagation of electromagneticompared numericalf§f and optical transmission through bi-
waves in periodic dielectric media® various dielectric ma- nary multilayers arranged according to deterministic aperi-
terials have been exploited and the interest particularly lies iodic distribution rules was investigatédVery recently the
the dielectric structures possessing the photonic band gaps.experiments on the optical dielectric multilayers with Fi-
complete “photonic band gap” in a dielectric microstructure bonacci structure were report&iHowever, to the best of
means the absence of photon propagation modes in any ddur knowledge, the localization problems of 1D aperiodic
rection for a range of frequencies. Therefore, the studies dftructures with more than two incommensurate intervals
photonic band structures may have potential applications ifave not been studied so far, although their structural char-
optical and electronic devices. Third, the localization occursacterization and other physical properties have been per-
not only in disordered system but also in the deterministidormed previously*~°
quasiperiodic systerf 1’ Furthermore, the exponentially lo-  In this paper we report the photonic localization of 1D
calized states can also appear in other deterministic aperiodiccomponent Fibonacci structuré&CFS’s), which contain
systems such as the incommensurate Aubry-Amdoelet®  k incommensurate intervald; (i=1,2,...k) and can be
and the deterministic aperiodic Rudin-Shapiro systethis  generated by the substitute ruke;,—A;A,, A—A, 1,
well known that quasicrystals are perfectly ordered, but the. .., A—A;_41, ..., A,—A;. By using a transfer matrix
Bloch theorem is inapplicable since there is no translationainethod, the optical transmissions through Kaeomponent
symmetry. On the other hand, the wave function is not exfibonacci multilayers are calculated, which illustrates a rich
ponentially localized as what happened in the disordered systructure. For the KCFS’s with an identidglwhen the layer
tem. In some sense, the quasiperiodic system represents aumber is large enough, one-dimensional photonic band
intermediate case between periodic and disordered ones. gaps will appear in the transmission spectrum. Furthermore,
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as the number of different incommensurate intervalm-

1545

tion parallel to the multilayer surfaces, the transmission

creases, gradually wider photonic band gaps are exhibited ithrough the interfacé,; A, is given by the transfer matrix
the spectra of the finite KCFS’s. For the infinite KCFS's, the

transmission coefficient is singularly continuous and multi-
fractal analysis is employed to characterize these transmis-
sion spectra. It is known that multifractal analysis is a suit-

-
Tii=lo n/n, )

able statistical description of the long-term dynamicaland the light propagation within a layéy is described by a

behavior of a physical systetfi®’ The multifractal formal-

ism relies on the nonuniformity of the system. Our investi-
gation demonstrates that the transmission spectra of the
KCFS’s are highly nonuniform intensity distributions that

possess scaling properties of multifractal.

Il. THEORETICAL MODEL AND NUMERICAL METHOD

Let us begin with the description of thecomponent Fi-

matrix T; where

CO0S);
i= ( 3)

—sing,
Sin(Si '

COSJ;
where the phasé; is given by s;=gn,d;, g is the vacuum
wave vector, and; is the thickness of the laydy; . Then the

propagation of light through an aperiodically layered me-
dium can be expressed by multiplying matrices of the differ-

bonacci structures. First, we define a basis that includes €Nt layers. For example, the transmission of light through a

distinct incommensurate intervals;, A,, ..., Ac. These

multilayer ordering agA;A;An,} can be obtained by the ma-

intervals are arranged inkecomponent Fibonacci sequence X M=Tp T TiT;,iTi -

with a substitution ruleS denoted as
Al_)AlAkl Ak_>Ak*li ey

Ai—>Ai*lV .y A2—>Al.

Considering the experimental setup, #tieomponent Fi-
bonacci multilayelC is sandwiched between two media of
materialA;, the corresponding transfer matrix is

MEP =M M©,, @)

In contrast, the KCFS’s can be expressed by a limit of thevhere

generation of the sequen@® . Let C{'=S"A,; thus
CS():AL
C(lk):AlAka

C(zk) =A1AAK-1,

Cf<k—) 1= AIAA- 1A,

and in generaC¥=Cc{?,+ {9, . If the interval number of
the generatiorC is defined asF(¥, F(¥ is satisfied by
FRO=F® +F® with F;=i+1 (i=0,1,...k—1). We

denote the number ofA;, (i=1,2,...k) in C{ as
N{(A). The ratios of these numbers are definedgs
=limn_..[N®(A)/NE(A)]. It turns out that the sefty;}

satisfies

k
et me=1,

D

Therefore, all these ratiog; = nﬁ (1<i=Kk) are irratio-
nal numbers between zero and unity except=1. It has

L= me1= =0 ni1= = 0372,

—-i+1

k) _ 1(k k) — (K7 (k)T (K
ME=TE, =TT

k) _ 1(k k k)1 (K)T(k
M= T, TOTT

K _ 0T RTRKT(K k) Tk K) (k) (k
M1 =To T s T - T T TOTATY

Therefore, the whole multilayer is represented by a product
matrix Mgk) relating the incoming and reflected waves to the
transmitted wave. From this expression the transmission co-
efficient can be written as

T[CY]= (5)

IM{|2+2
where |[M{¥|2 denotes the sum of the squares of the four
elements oM (.

IIl. NUMERICAL RESULTS AND DISCUSSION

Based on Egs.(4) and (5), the optical transmission
through the KCFS’s can be calculated. The indices of the
refraction corresponding to thie different layers{A;} are
chosen as;=3#; in this whole optical investigation of the
KCFS's, wheren; can be given by Eq(l). In order to ex-
hibit more clearly the effect of the underlying geometrical
structures, we consider the simplest setting. We suppose that

been provedt that the KCFS's are quasiperiodic when 1 the index of refraction is wavelength independent and the
<k=5, while for k>5, the KCFS’s are nonquasiperiodic, thicknesses of th& different layers{d;} are chosen to give

but they are still ordering.

The system we study here is tkecomponent Fibonacci
(KCF) multilayers consisting ok different kinds of layers
A Ay oL LA, ..., A¢ with indices of refraction{n;}
and thicknessedd;}, respectively(where i=1,2,...Kk).

n;d;=nd, i.e., the optical phases corresponding to khdif-
ferent layers are the same &s=6 (i=1,2, ... k).

We have studied a series of the transmission spectra of the
KCFS'’s by increasing the number of layers and by varying
the number of incommensurate intervéllsAs an example,

Now we consider the optical propagation through the KCFFig. 1 gives the transmission coefficiehtas a function of
multilayers. In the case with normal incidence and polarizathe phase’ in the intervall 7,27] for the three-component
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FIG. 1. Transmission coefficient as a function of the phasé for the three-component Fibonacci structures with the following
generation and the number of layefat Ct® andN=13, (b) C{> andN=28, (c) C{? andN=60, and(d) C{3 andN=189, respectively.

Fibonacci multilayers K=3) with the generationsc:(73), photonic band gaps can be easily observed. Meanwhile the
c®, ¢, andC{®, respectively, and the indices of refrac- average transmission defined above varie§Tag, =0.499,
tion of the three different layersA} (i=1,2,3) aren;=3,  0.268, 0.151, and 0.127, corresponding to Figs),2(b),
n,=1.397, anch;=2.047, respectively. It is evident that in 2(c), and 2d), respectively. Hence the total transmission
the case of a very small number of layers there is no totapver the spectral region decreases gradually. Consequently,
reflection, although there exists some region of minimumwider photonic band gaps appear whlerincreases in the
transmission; when the number of layers becomes larg&KCFS’s. Moreover, when the number of layers in the
some regions may give rise to total reflection. Generally, byKCFS’s is sufficiently large, the width of the photonic band
increasing the number of layers of the structures, more andap in the corresponding transmission spectra increases sig-
more transmission zones diminish gradually and some ofificantly whenk increases. This tendency is demonstrated
them approach zero transmission. In this way, a oneelearly in Figs. 8a)—3(d), where the number of layers is
dimensional photonic band gap is realized. In order to have aboutN=230 000. It is well known that the existence of the
quantitative impression, we define an “average transmisphotonic band gap is of great interest for potential techno-
sion” as logical applications. The overlap of the photonic gap and
electronic band edge suppresses the spontaneous emission of
light and favors the population reverse, which can improve
the performances of many optical and electronic devices.
Obviously, the large photonic band gap of the dielectric
It follows that the average transmissions of Fig&)41(d) structures may make it easier to satisfy the technical require-
are (T),,e=0.640, 0.519, 0.424, and 0.302, respectively.ments. From this point of view, the KCFS’s might be a kind
Therefore, the total transmission over the spectral region off structural design for the high-performance optical and
interest definitely decreases when the number of layers in thelectronic devices.
KCFS's (k is fixed increases due to the appearance of pho- In addition, it is interesting to investigate the optical fea-
tonic band gaps. tures of the KCFS’s withk>5, which actually belong to

It is also enlightening to compare the optical propagatiomnonquasiperiodic structures. As an example, Figa)-44(d)
behaviors of the KCFS’s with different number of incom- demonstrate the transmission coeffici@nas a function of
mensurate intervals. The calculations are performed on the the phases for the KCFS’s withk=6 and 10, respectively.
transmission of different KCFS’s with almost identical num- The average transmission varied(ds ,,.=0.1034, 0.0278,
bers of layers. Figure 2 illustrates the transmission coeffirespectively, in Figs. @ and 4b) corresponding tk=6,
cient T as a function of the phasé for four KCFS's with  and(T),,.=0,0556, 0.0126, respectively, in Figgchand
differentk. It can be easily seen that with increasingthe  4(d), corresponding t&=10. One may find that the electro-

1 (2=
Mae-= | T(d5 ©

m
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FIG. 2. Transmission coefficiefit as a function of the phas&for the k-component Fibonacci structures with the different incommen-
surate intervalk. The value ofk, the generation, and the number of laybrare as follows(a) k=2, C{2, andN=233; (b) k=3, C{Y,
andN=277; (c) k=4, C{¥, andN=250; and(d) k=5, C{3, andN= 245, respectively.

magnetic waves are also localized in these nonquasiperiodl€ we count the number of boxed(a)da where the prob-
structures and the photonic band gaps in these transmissiability p, has singularity strength between and a+dc,
spectra develop when the number of layers is increasedhenf(«) can be loosely defined as the fractal dimension of
These features resemble the results from the Rudin-Shapithe set of boxes with singularity strength that is,

systemt® Moreover, with increasing, the width of photonic

band gaps enlarges and the optical behaviors in the KCFS’s N(a)da~z""“da. (8)

ywth k>5 are much closer to _those of_random d|str|buyons-|—he f(@) singularity spectrum provides a mathematically
in some senses. Further studies on this aspect are being Wacise and intuitive description of the nonuniform systems.
dertaken. On the other hand, it should be mentioned that the general-
ized dimensiorD, provides an alternative description of the
singular measure. It is defined as

InZi[pi(e)]9
Ine ’

IV. SCALING PROPERTIES IN THE TRANSMISSION
SPECTRA OF THE KCFS'’s 1

= |
d q- 1s—>0

9

In the previous discussion we applied the average trans-
mission to describe the whole transmission spectra of the )
KCFS's. This analysis, however, is limited especially in theDq corresponds to scaling exponents for ¢ie moments of
case when the number of layers in the KCFS’s is largdh® measure. . _
enough. Actually, the transmission spectra shown in Figs. N the case of the transmission spectrum, the optical trans-
3(a)—3(d) should be neither discrete nor continuous. Thesdnission coefficient isa positive qua_ntlty and the phage space
complicated spectra can be characterized by statistical metif & SUpport. A straightforward application of the multifractal
ods such as multifractal analysis. Multifractal analysis is alormalism requires the evaluation of the exact integral of the
tool for characterizing the nature of a positive measure in antensity measure of the structures with infinite Iength over a
statistical sens®*!If a positive measure is covered with Small segment of length in the phase space. In this case, the
boxes of sizes andp;(s) is denoted as the probabilitjn- computer time for calculation will increase incredibly. To

tegrated measuren the ith box, an exponentsingularity ~ SCIVe this problem, an approximate scheme is ch6Sém.
strength «; can be defined as stead of calculating the infinite KCFS's, we only deal with a

structure that contains repeating copies of finite generation,
i.e., C of the original structure. It is known that the trans-

pi(e)~e“. (7) mission of a periodic multilayer is also periodic and the pe-
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FIG. 3. Transmission coefficiefit as a function of the phas&for the k-component Fibonacci structures with the different incommen-
surate intervalk. The value ok, the generation, and the number of layirare as follows(a) k=2, C$2 , andN=28657;(b) k=3,C%),

andN=27201;(c) k=4, C${), andN=31422; andd) k=5, C{,

andN=29244, respectively.

riodicity is 7. Therefore, we need only consider the situationfinite sample is therefore available at a local level, i.e., for a
in one period of phase space. The essential ingredient igiven phase space. The valuesaofind f(«) are given by

multifractal characterization is the probability weigipts In

our case,p; is denoted as the weight of the transmission

coefficient in the transmission spectrum, i.e.,

ITi|?

pi:—a

N
> T2
i=1

whereT; is the transmission coefficiefishown in Eq.(5)]
with the phases;==(i/N) (i=1,2,... N) and the number
of layers N=F§1k). The partition function can then be ex-
pressed as

(10

11

where the parametey provides a “microscope” for explor-
ing the singular measure in different regions. forl, Z(q)
amplifies the more singular regions pf, while for q<<1 it
accentuates the less singular regions. gerl the measure
Z(1) replicates the original measure. Thgy) curve of any

Z(q)InN’ (12
1 qz'(q)
fla)= m( InZ(q)— Z(q) )

The generalized dimensiori3, are related to the spectrum
of singularity f(«) by the Legendre transform

f(a)=aq—(q—1)Dy, 13

d
a(Q)=d—q(q—1)Dq-

In order to illustrate the multifractality of the transmission
spectra of the KCFS’s shown in FigdaB-3(d), we calculate
the correspondindg(«) spectra shown in Fig.(8) according

to Egs.(11)—(13). In Fig. 5a) the data points fit perfectly
into a smooth curve, which is a characteristic of an infinite
structure. The quantity(«) is commonly the dimension of
the set of phases in the transmission spectrum. In particu-
lar, there are several physical meanings inftte) spectrum

of a transmission measur@) The abscissa of the summit

of thef(a) curve, which corresponds tp=0, is the strength
of a generic singularity. In some senses, the expomgnt
characterizes the behavior of the transmission at a generic
singularity. Obviouslyf (ag) <1, which means that the sup-
port of the transmission is not the whofeaxis due to the
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FIG. 4. Transmission coefficieft as a function of the phas&for the k-component Fibonacci structures wki»5. The value ok, the
generation, and the number of laydtsare as follows{a) k=6, C$}), andN=251; (b) k=6, C{3), andN=5103;(c) k=10, C5’, and
N=265; and(d) k=10, C{}? , andN=4746.

existence of the optical band gaps in the spectra. Moreovesegments of size to cover the whole phase axis, is the
because the width of the optical band gap increases whendimension of the support as mentioned aboRg= f(«)
propagates, the fractal dimension of the supg¢ety) de- <1. (i) D, for g—1 is the information dimension of the
creases correspondingl§ii) The extremesy,i, and a4 0f  intensity measure,

the abscissa of thé(a) curve represent the minimum and
the maximum of the singularity exponesat which acts as an
appropriate weight in phase space. In facty,
=limg_, 1 .Dq and apax=limy_, _.Dq characterize the scal-
ing properties of the most concentrated and most rarefied
region of the intensity measure, respectively. By increasin
the number of incommensurate intervélsn the KCFS's,
the value ofA @ = a2 @min @lso gradually increases. This

implies that the optical transmission measure of the KCFS”?(a(l))za(l):Dl The distance oD to unity is a faith-
approach__es the b_ehaw_or of a random system v_vlhen- ful measure of how singular the transmission measure is.
creases(iii) The dimension of the set of transmission peaksFigure 5b) shows that the information dimensi@ in the
dp=1(1), corresponding tar=1. d, represents the dimen- KCFS's is less than the dimension of the supgt i.e.,

sion of the set of phasé for which the local singularity D;<Dy<1. So the transmission distribution of the KCFS'’s

exponenta is less than unity. In F_ig.(ﬁ) we haVEdP<l.; with 2<k=<5 is definitely a fractal measuré€ii) D, for q
whenk increasesd, decreases evidently. Therefore, differ- _, i< 1o correlation dimension

ent KCFS’s exhibit different transmission distributions.

The generalized dimensidd, characterizes the nonuni-
formity of the measure, positivg’s accentuate the denser
regions, and negativg’'s accentuate the rarer ones. Figure
5(b) shows the plot of generalized dimensibg vs q for the
transmission spectra of the KCFS’s shown in Fig. 3. The
plots of Dy vs g in Fig. &b) correspond to the plots df «) where (u(g)) is the average density of the transmission
vs a in Fig. 5@). For some special values qf one can take peaks in the phase interval ef=Aé in the transmission
D, as the dimension of a special set, which supports a pameasure of the KCFS. We hav@,(k)<Dy(k') in the
ticular part of the measureli) D, for q=0, i.e., Dy KCFS's if k>k’ (for example,D,~0.77 fork=3 andD,
=lim,_o[InN(e)/In(1/e) ], whereN(&) is the number of line ~0.69 fork=5). It has been demonstrated that whehe-

D.— i —Zipi(e)Inpi(e)
T n(1e)

Where —pi(e)In[p(e)] is an expression from information
theory and corresponds to the amount of information associ-
ated with the distribution ofp;(¢) values. Forq=1,

InS;p?(e)
D,= lim LG
Ine

In{u(e))

Ine

e—0 e—0
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(a)1o and possess multifractality. Whénincreases, the photonic
localization of the electromagnetic wave is exhibited and
08l wider optical band gaps are found.
06 V. CONCLUSION
= In this paper we have presented the transmission of elec-
- 04l tromagnetic wave through tHecomponent Fibonacci struc-
ture, which containk different incommensurate intervals
and can be generated by a substitution rule. The transmission
02r i spectra of th&k-component Fibonacci multilayers have been
04 08 12 15 20 24 obtained by a transfer_mgtrix met_hpd. It has b_een demon-
o strated that the transmission coefficient has a rich structure:
For the KCFS’s with a fixedk, the photonic localization is
expected and the one-dimensional band gap appears when
the layer of the sequence becomes sufficiently large; on the
(b),s other hand, for the finite KCFS’s with gradually increaskng
the width of the photonic band gap becomes larger. These
interesting properties make the KCFS’s a possible candidate
201 e of the designed material for the high-performance optical
and electronic devices. When the number of layers ap-
proaches infinity, the transmission coefficient is expected to
CAS demonstrate a multifractal behavior. Multifractal analysis re-
veals that these transmission measures can be characterized
10l | by a monotonically decreasing dependencédgfvs q; the
k=2 dimension spectrum of singularitid¢«) is a smooth func-
k=4 tion with a summit ofD,<<1. The transmission measure does
0.5,5 20 20 20 not have an absolutely continuous component. Therefore, the

q

optical propagations through the KCFS's{R<5) are sin-
gular continuous and possess multifractal properties. Finally,

an experimental investigation of the transmission through the
media of the KCFS’s is expected in further study.

FIG. 5. (a) f(a) spectra andb) plot of the generalized dimen-
sion Dy as a function ofy, for the transmission distributions of the
KCFS’'s wherek=2,3,4,5, respectively.
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