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Interface optical phonons in k-component Fibonacci dielectric multilayers
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We present the studies of the interface optical phonons ink-component Fibonacci~KCF! dielectric multi-
lyaers, in whichk different incommensurate intervals are arranged according to a substitution rule. In the
dielectric continuum approximation, the dispersion relations and the frequency spectra are obtained by the
transfer-matrix method. Free-boundary and periodic-boundary conditions are taken into account. With the
free-boundary condition, the dispersion relations of the interface optical phonons in the KCF multilayers are
demonstrated to possess two bands of dual structures. For the KCF multilayers with 1,k<5, each subband is
a self-similar structure and containsk11 filial generations; for the KCF multilayers withk.5, the sub-bands
do not show self-similarity, but they still have the hierarchical characteristic~wherek is the number of different
incommensurate intervals!. In the case of the periodic-boundary condition, the frequency span of interface
optical phonons in the KCF multilayers is singularly continuous and the frequency spectra are analyzed by a
multifractal concept. A dimensional spectrum of singularities associated with the frequency spectrum,f (a),
demonstrates that in the KCF multilayers the interface optical phonons distribution presents a genuine multi-
fractality. It is also shown that by increasing the number of different incommensurate intervals in KCF
multilayers, the fractal dimension of the corresponding support decreases.@S0163-1829~99!06205-0#
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I. INTRODUCTION

Recently much attention has been paid to elementary
citations in artificial multilayers. The interest has been
cused particularly on magnons,1 plasmons,2 and phonons.3 In
phonon studies, the optical phonon in alkali halide or po
semiconductor multilayers is rather attractive.4 It is well
known that there are two kinds of optical modes: bulkli
excitation and interface phonons. In the multilayer syste
the excitations in individual layers are coupled each other
the tail of evanescent field.5 Hence the interface phonons a
coupled to induce the collective excitation of the who
multilayer system when the layer thickness is relatively th
Since the coupling of different layers depends critically up
the structure of multilayers, it is interesting to investigate
interface optical phonons in the dielectric multilayers w
various configurations, such as periodic, quasiperiodic
even other aperiodic structures.

The Fibonacci sequence is one of the well-known
amples in one-dimensional~1D! quasiperiodic structures
The Fibonacci sequence can be produced by repeated a
cation of the substitution ruleA→AB andB→A, in which
the ratio of the numbers of the two incommensurate interv
A andB is equal to the golden meant5(A511)/2. Since the
first realization of Fibonacci superlattices reported by Mer
et al.,6 a lot of works on physical properties of 1D quas
periodic structures have been carried out both experimen
and theoretically.7 For example, the exotic wave phenome
of Fibonacci systems in x-ray scattering spectra,8 Raman
scattering spectra,9 and in propagation modes of acous
waves on corrugated surfaces10 have been investigated
However, only a few studies of optical interface modes
Fibonacci dielectric superlattices have been reported,4,11 and
to our knowledge, there seems no work on the interface
tical phonons in 1D aperiodic structures with more than t
PRB 590163-1829/99/59~5!/3599~7!/$15.00
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incommensurate intervals, although their structural char
terization and other physical properties have been inve
gated previously.12,13

In this paper, we investigate the interface optical phono
in k-component Fibonacci~KCF! dielectric multilayers,
which contain k incommensurate intervals Ai ( i
51,2, . . . ,k) and can be generated by the substitute r
A1→A1Ak , Ak→Ak21 , . . . , Ai→Ai 21 , . . . , A2→A1 . In
the dielectric continuum approximation, the dispersion re
tion and frequency spectra are achieved by a transfer-ma
method. We discuss the interface optical phonons in the K
dielectric multilayers with free-boundary condition an
periodic-boundary condition, respectively. It is shown th
with free boundary condition, the dispersion relations of
terface optical phonons possess two dual bands. For the
multilayers with 1,k<5, which are quasiperiodic, each su
band is a self-similar structure withk11 filial generations;
while for the KCF multilayers withk.5, which are nonqua-
siperiodic, the sub-bands only show the hierarchical cha
teristic. On the other hand, with periodic boundary conditio
the frequency distribution for the KCF dielectric multilaye
is singularly continuous and multifractal analysis is e
ployed to characterize these frequency spectra. It is kno
that multifractal analysis is a suitable statistical descript
for the study of long term dynamical behavior of a physic
system.14,15 Our investigation demonstrates that the fr
quency distribution of interface optical phonons in the KC
multilayers present scaling properties of multifractal inde

II. THE THEORETICAL MODEL

To begin with, we give a description of thek-component
Fibonacci structures~KCFS!. We define a basis which in
cludesk distinct incommensurate intervalsA1 ,A2 , . . . ,Ak .
These intervals are arranged in ak-component Fibonacci se
3599 ©1999 The American Physical Society
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quence with a substitution ruleS denoted as

S5
A1→A1Ak ,

Ak→Ak21 ,

. . . ,

Ai→Ai 21 ,

. . . ,

A2→A1 .

6
On the other hand, the KCFS can also be expressed a

limit of the generation of the sequence,Cn
(k) . Let Cn

(k)

5SnA1 , it follows C0
(k)5A1 , C1

(k)5A1Ak , C2
(k)

5A1AkAk21 , . . . , Ck21
(k) 5A1AkAk21 . . . A3A2 , and in gen-

eral,Cn
(k)5Cn21

(k) 1Cn2k
(k) . If the interval number of the gen

eration Cn
(k) is defined asFn

(k) , Fn
(k) is satisfied byFn

(k)

5Fn21
(k) 1Fn2k

(k) with Fi5 i 11 (i 50,1, . . . ,k21). We de-
note the number ofAi ( i 51,2, . . . ,k) in Cn

(k) as Nn
(k)(Ai).

The ratios of these numbers are defined ash i

5 limn→`@Nn
(k)(Ai)/Nn

(k)(A1)#. It turns out that the set$h i%
satisfies

hk
k1hk51,

1:hk5hk :hk215•••5h i :h i 215•••5h3 :h2 . ~1!

Therefore all these ratiosh i5hk
k2 i 11 (1, i<k) are irratio-

nal numbers between zero and unity excepth151. It has
been proved12 that the KCFS are quasiperiodic for 1,k
<5; while for k.5, the KCFS are nonquasiperiodic, y
they are still ordering.

Thek-component Fibonacci~KCF! multilayers we studied
here consist of k different kinds of layers A1 ,
A2 , . . . ,Ai , . . . ,Ak with dielectric constants$« i(Ã)% and
thicknesses$di%, respectively~where i 51,2, . . . ,k). Now
we consider collective excitation in the KCF dielectric mu
tilayers. In the electrostatic limit, the electrostatic poten
F obeys the Laplacian equation¹2F(r ,t)50. Let z axis be
perpendicular to the multilayer planes, we assume each l
is isotropic, so that without loss generality, the wave vectoq
may be taken parallel to thex axis. It follows that the elec-
trostatic potential F(r ,t) can be written as F(r ,t)
5w(z)exp$i(qx2Ãt)%, and

S d2

dz2
2q2D w~z!50. ~2!

It is clear that the general solution of Eq.~2! can be ex-
pressed asw l(z)5gle

qz1hle
2qz in each layer, wherel is an

index of the layerAl . While at the interface of layersAl and
Al 11 , the electrostatic continuum conditions require

w l~z!5w l 11~z!,

« l

dw l~z!

dz
5« l 11

dw l 11~z!

dz
. ~3!

If a local coordinate is chosen for each layer and its origin
positioned at the center of this layer, the electrostatic po
tial can be expressed in a matrix form as
the

l

er

s
n-

S gl 11

hl 11
D 5Tl 11,l S gl

hl
D . ~4!

The transfer matrix has the form of

Tl 11,l5S aeq~dl1dl 11!/2 beq~dl 112dl !/2

beq~dl2dl 11!/2 ae2q~dl1dl 11!/2D , ~5!

in whicha5 1
2 (11« l /« l 11), b5 1

2 @12« l /(« l 11)#, and« l is
the dielectric constant anddl is the thickness of the layerAl
~wherel 51,2, . . . ,k). In this way, the electrostatic behavio
in layered medium can be achieved by multiplying matric
of the different layers.

Here we aim to study thek-component Fibonacc
multilayer Cn

(k) sandwiched between two media of mater
A1 , the corresponding transfer matrix is

Mn
~k!5Mn2k

~k! Mn21
~k! , ~6!

where M0
(k)5T1

(k) , M1
(k)5Tk,1

(k)T1
(k) , M2

(k)5Tk21,k
(k)

Tk,1
(k)T1

(k) , . . . , Mk21
(k) 5T2,3

(k)T3,4
(k) . . . Tk21,k

(k) Tk, 1
(k) T1

(k) . There-
fore the whole multilayer is represented by a product ma
Mn

(k) relating to the initial and the final electrostatic potent
through the multilayer. By considering the boundary con
tion, the dispersion equation can be obtained. From the
persion equation, the features of the interface opti
phonons in the KCF dielectric multilayers can be derived.
the following sections, we are going to perform the calcu
tions with two kinds of boundary conditions: the fre
boundary condition and the periodic-boundary condition,
spectively.

III. DISPERSION RELATION
WITH FREE-BOUNDARY CONDITION

Suppose the environment of dielectric constant is«e . The
electrostatic potential on the left and right boundaries,FL
andFR , can be written asFL(R)5wL(R)exp$i(qx2Ãt)%. The
constraint equations are given4 by

«1e2qd1/2g12«1eqd1/2h15«ee
2qd1/2g11«ee

qd1/2h1 ,

«1eqd1/2gN112«1e2qd1/2hN115«ee
qd1/2gN11

1«ee
2qd1/2hN11 , ~7!

where «1 is the dielectric constant of layerA1 , d1 is the
thickness of the same layer,N is the total number of layers in
the multilayer, andq is the in-plane wave vector. On th
other hand, as we discussed in Sec. II, the recursion equa
for the KCF multilayer can be expressed as

S gN11

hN11
D 5Mn

~k!S g1

h1
D[S m11 m12

m21 m22
D S g1

h1
D , ~8!

where m11,m12,m21,m22 are complicated function relating
to the wave vectorq, the frequencyÃ, the thicknesses$di%
of layers and the dielectric constants$« i(Ã)%. By combining
Eqs.~7! and~8!, we have the dispersion equation as follow

~«1
22«e

2!e2qd1m111~«12«e!
2eqd1m122~«11«e!

2eqd1m21

2~«1
22«e

2!m2250. ~9!
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FIG. 1. The dispersion relation of the couple
interface optical phonons for thek-component Fi-
bonacci dielectric multilayers with the following
generation, the total number of layers and the
tal number of layer Ak : ~a! C14

(2) ,N5377,
N(A2)5233; ~b! C18

(3) ,N5872, and N(A3)
5277; ~c! C21

(4) ,N5907, andN(A4)5250; ~d!
C24

(5) ,N51001, and N(A5)5245; ~e! C24
(6) ,N

5533, andN(A6)5119; ~f! C33
(10) ,N5655, and

N(A10)5105, respectively.
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Obviously, the physical properties of the interface opti
phonons of the KCF multilayers are decided by the disp
sion equation~9!.

Based on Eqs.~6! and ~9!, the interface optical phonon
dispersions in the KCF dielectric multilayers are numerica
calculated with free-boundary condition. To demonstr
clearly the effect of the underlying geometrical structur
we consider a simple setting. The dielectric consta
$« i(Ã)% corresponding to thek different layers $Ai%
( i 51,2, . . . ,k21,k) are chosen as following: $« i%
( i 51,2, . . . ,k21) are frequency independent, but only t
dielectric constant of layerAk , «k , is frequency dependen
It follows that «k(Ã)5«k,`(Ã22Ãk,LO

2 )/(Ã22Ãk,TO
2 ) for

alkali halide or polar semiconductor materials, whereÃk,LO

andÃk,TO are the longitudinal-optical and transverse-opti
frequencies. As an example, we take«k,`52.34,Ãk,TO
532.01 THz, andÃk,LO550.74 THz for NaCl; «153;
and « i5«13h i ( i 52,3, . . . ,k21), whereh i can be given
by Eq. ~1!. And the environment is supposed to be vacuu
i.e., «e51. At the same time, the thicknesses of thek differ-
ent layers$di% are chosen asdi5d13h i ( i 52,3, . . . ,k).

Thereafter the interface optical phonons in the KCF
electric multilayers with different number of incommens
rate intervalsk are investigated. The calculations are p
formed on different KCF multilayers. Figures 1~a!–1~f!
illustrate the dispersion relations of interface optical phon
l
r-

e
,

ts

l

,

-

-

s

for six KCF multilayers with differentk. It is shown that the
collective excitations occur only in frequency regimes whe
the ratio «k(Ã)/« i ( i 51,2, . . . ,k21) is negative, becaus
the interface optical phonons may be considered as a lin
superposition of surface modes which localized at each
terface in the multilayer. In each phonon dispersion sp
trum, there exist 2Nn

(k)(Ak)52Fn2k
(k) eigenfrequencies, wher

Nn
(k)(Ak) is the total number of layerAk in the multilayer

with the generationCn
(k) , and Fn2k

(k) satisfiesF j
(k)5F j 21

(k)

1F j 2k
(k) with Fi5 i 11 (i 50,1, . . . ,k21) ~as mentioned in

Sec. II!. This is due to the fact that the dispersion equat
~9! contains 2Nn

(k)(Ak) powers ofÃ. It is interesting to note
that each spectrum is divided into two dual branches,Ã1

and Ã2 . Similar to the situation of periodic multilayers
these two branches are separated by a gap. With the inc
ing value ofqd1 , Ã1 band is down-shifted andÃ2 band is
up-shifted in frequency because of the screening provided
the layers$Ai% ( i 51,2, . . . ,k21). For highqd1 , the spec-
tra are highly degenerated. The calculations show that th
exist limiting frequencies when the thicknessd1 approaches
infinity. For k52, asd1→`, both Ã1 and Ã2 bands ap-
proach the single-interface surface-mode frequencyÃ
541.2772703762 THz, which satisfies the implicit dispe
sion relation«2(Ã)52«1 . When k.2, the limiting fre-
quencies obeys the equation@«11«k(Ã)#@«k211«k(Ã)#
50. For k53, the limiting frequencies areÃ1



e

al
e

3602 PRB 59PENG, JIN, WANG, HU, JIANG, AND FENG
FIG. 2. The eigenfrequency
versus number of optical interfac
modes for thek-component Fi-
bonacci multilayers forqd150.6.
The insets show the enlarged loc
regions. The parameters are th
same as those in Fig. 1.
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541.2772703762 THz andÃ2544.6678969765 THz. Fo
k54, Ã1 remains, whileÃ2 equals 44.1712652378 THz
For k55, Ã1 keeps the same value, whileÃ2 reduces to
43.8206365706 THz. Fork56 and k510, Ã2 decreases
further to 43.5573813549 THz and 42.9295309315 TH
respectively. Actually, these limiting frequencies are the i
lated modes, and approach the surface excitations from
isolated slab (A1AkA1) and the slab (A1AkAk21), respec-
tively, when the thicknessd1 approaches infinity~In this
case, it follows thatdi→`, wherei 51,2, . . . ,k).

While for lowerqd1 , the optical phonon dispersion spe
tra of the KCF multilayers with 1,k<5 consist ofk11
bands. The hierarchical characteristics are clearly show
Figs. 2~a!–2~d!, which gives the eigenfrequency versus t
number of interface optical modes in the KCF multilaye
with generationCn

(k) whenqd150.6. We find that the eigen
frequencies in the subbands ofÃ1 or Ã2 are divided into
k11 groups, each group consists ofFn22k

(k) ,
Fn22k2(k21)

(k) ,Fn22k2(k22)
(k) , . . . ,Fn22k21

(k) , andFn22k
(k) eigen-

frequencies, respectively. So the total number of eigen
quencies in each band isNn

(k)(Ak)[Fn2k
(k) 5Fn22k

(k)
,
-
he

in

-

1(i51
k Fn22k2(k2i)

(k) . For example, Fig. 2~b! is for 3-component
Fibonacci multilayer with generationC18

(3)(k53). The sub-
bandÃ1 or Ã2 has totallyN18

(3)(A3)[F15
(3)5277 eigenfre-

quencies. They are divided into 4~i.e., k11) groups, and
each group containsF12

(3)588, F10
(3)541, F11

(3)560, andF12
(3)

588 eigenfrequencies, respectively. Moreover, every s
group is separated intok1154 groups further as indicate
in the inset of Fig. 2~b!. In fact, each sub-band in the phono
dispersions of the KCF multilayers with 1,k<5 is self-
similar, which consist ofk11 filial generations as illustrated
in Figs. 2~a!–2~d! ~wherek is the number of different incom
mensurate intervals!. Physically this property originates from
the configuration characterizations of thek-component Fi-
bonacci structures. On the other hand, it is noteworthy t
the interface optical phonon dispersion is nonuniform
shown in Figs. 2~a!–2~d!. For a specific KCF multilayer, in
the Ã1 band, the low-frequency region is wider than that
the high-frequency region; while in theÃ2 band, the low-
frequency region is narrower than that in the high-frequen
This feature reflects the changes of quasiperiodicity in
KCF structures (1,k<5).
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FIG. 3. The frequency spectra of th
k-component Fibonacci multilayers with gener
tion numberj. ~a! k52; ~b! k53; ~c! k54; ~d!
k55; ~e! k56; ~f! k510.Ã1 band is up, and
Ã2 band is below.
o

su
u

e
he
rty
th

i
ith
ra

F

i-

-
he

ec-
al

er of

the

nds
ls
It is interesting to mention that for lowerqd1 , the optical
phonon dispersion spectra of the KCF multilayers withk
.5 do not show self-similarity. Figures 2~e! and 2~f! illus-
trate the eigenfrequency versus the number of interface
tical modes in the KCF multilayers withk56 and k510,
respectively. It seems that the eigenfrequencies in the
bands ofÃ1 or Ã2 are separated into several groups, b
the separation rule is not as obvious as that for the cas
1,k<5. This difference may arise from the fact that t
KCF structures withk.5 do not possess the Posit prope
and they do not have quasiperiodicity. Further studies on
aspect are being undertaken.

IV. FREQUENCY SPECTRA
WITH PERIODIC-BOUNDARY CONDITION

The numerical calculations of interface optical phonons
the KCF dielectric multilayers can also be carried out w
the periodic-boundary condition, which is usually called
tional approximation. The recursion equation for the KC
multilayers can be rewritten as

S gN11

hN11
D 5Mn

~k!S g1

h1
D[S m11 m12

m21 m22
D S g1

h1
D 5eiqDS g1

h1
D ,

~10!
p-

b-
t
of

is

n

-

whereq is the wave vector andD is the total thickness of the
multilayer. We definexn

(k)5 1
2 Tr Mn

(k) , where TrMn
(k) is the

trace of matrixMn
(k) . Therefore under the rational approx

mation, the eigenfrequencies satisfy

xn
~k!5cosqD. ~11!

According to Eqs.~6!, ~10!, and~11!, the frequency spec
tra of the KCF dielectric multilayers can be calculated. T
parameters, such as the dielectric constants$« i(Ã)% and the
thicknesses$di% of layers (i 51,2, . . . ,k), are the same as
described in Sec. III. Figures 3~a!–3~f! illustrates the fre-
quency spectra of the KCF multilayers withk different in-
commensurate intervals. It is shown that the frequency sp
trum of the KCF multilayer contains two sets of du
structures:Ã1 and Ã2 . For the KCF multilayer with an
identicalk, by increasing the generation numberj, more and
more subbands and gaps emerge. Moreover, the numb
subbands in each setÃ1 or Ã2 is F j 2k

(k) , where j is the
generation number of the KCF multilayer, andFn

(k)5Fn21
(k)

1Fn2k
(k) with Fi5 i 11(i 50,1, . . . ,k21). It is enlightening

to compare the interface optical phonon distributions of
KCF multilayers with differentk. As shown in Fig. 3, for the
almost identical number of subbands, the widths of subba
decrease when the number of incommensurate intervak
increases. For example, whenk52 and j 58, the total width
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of F8
(2)526 subbands isS i 51

26 DÃ i
(2)53.62851 THz; when

k53 and j 510, the total width ofF10
(3)526 subbands is

S i 51
26 DÃ i

(3)51.49679 THz; whenk54 and j 512, the total
width of F12

(4)528 subbands is S i 51
28 DÃ i

(4)

50.586151 THz; whenk55 and j 514, the total width of
F14

(5)530 subbands isS i 51
30 DÃ i

(5)50.194019 THz; whenk
56 and j 516, the total width ofF16

(6)532 subbands is
S i 51

32 DÃ i
(6)50.0613213 THz; and whenk510 and j 523,

the total width of F23
(10)532 subbands isS i 51

32 DÃ i
(10)

50.0229262 THz. Therefore, the subbands in the freque
spectra of the KCF multilayers gradually develop to be m
discrete and much narrower whenk propagates, and the fre
quency distribution of the KCF multilayers may approa
that of a disordered system at a sufficient largek. From this
point of view, whenk varies, the KCF multilayers provide
generic model displaying the evolution from periodicit
quasiperiodicity to randomness. Additionally, Figs. 3~a!–3~f!
implies that when the generation numberj is large enough,
the frequency spectra of the KCF multilayer are neither d
crete nor continuous. These spectra can be characterize
statistical methods such as multifractal analysis.

Multifractal analysis is a tool for characterizing the natu
of a positive measure in a statistical sense.16 Here suppose
the measure can be generated by dividing an unit region
pieces $si% ( i 51,2, . . . ,N) with measurepi and size l i .
Then the partition function is defined as14

G~Q,t,$si%,l !5(
i 51

N pi
Q

l i
t

, ~12!

which satisfies

G~Q,t!5 lim
l→0

G~Q,t,$si%,l !5const.

The parameterQ provides a ‘‘mathematical microscope’’ fo
exploring the singular measure in different regions. Once
mass exponentt(Q) is determined, the fractal dimension o
the set of pieces with singularity strengtha, f (a), can be
derived from

a~Q!5
dt~Q!

dQ
,

f ~Q!5Qa~Q!2t~Q!. ~13!

The f (a) singularity spectrum provides a mathematica
precise and intuitive description of the nonuniform system
In our case, we consider the subbands in the frequency s
traÃ1 or Ã2 ,l i represents the width of thei th subband, and
the measure is given aspi51/F j 2k

(k) . A straightforward ap-
plication of multifractal formalism requires the evaluation
exact integral of the frequency measure of the structures
infinite length over small segment of length in the spa
Meanwhile the computer time for calculation will increa
incredibly. To solve this problem, an approximate schem
chosen as takingGn11 /Gn>1 when the generation numbern
is large enough. Figure 4 gives thef (a) spectra correspond
ing to the frequency spectra in the KCF multilayers. It
shown that the data points fit into smooth curves, which
characteristic of an infinite structure. The quantityf (a) is
cy
e

-
by

to

e

.
ec-

th
.

is

a

considered as the dimension of the set of subbands$si% in the
frequency spectrum. Particularly, it should be emphasi
that f (a) spectrum of a frequency distribution has the fo
lowing physical implications:~i! The abscissaa0 of the sum-
mit of f (a) curve, which corresponds toQ50, is the
strength of a generic singularity. Obviouslyf (a0),1, which
means that the support of the subbands is not the wholÃ
axis. Moreover, since the widths of the subbands decre
when k propagates, the fractal dimension of the supp
f (a0) decreases correspondingly.~ii ! The extremesamin and
amax of the abscissa of af (a) curve represent the minimum
and the maximum of the singularity exponenta which acts
as an appropriate weight in frequency measure. In fact,amin
andamax characterize the scaling properties of the most c
centrated and most rarefied region of the frequency mea
respectively. As the increasing of the number of incomm
surate intervalsk in the KCF multilayers,Da5amax2amin
decreases gradually. This may imply that the frequency
tribution of the KCF multilayer approaches the behavior o
random system whenk increases. The above scaling analy
indicates the frequency spectrum of the KCF multilayers i
generic multifractal. Whenk increases, the narrower sub
bands and wider gaps are found in the frequency spectr
the KCF multilayers, the fractal dimensions definitely d
crease.

V. CONCLUSION

We have presented the interface optical phonons in
k-component Fibonacci~KCF! dielectric multilayers, which
containsk different incommensurate intervals and can
generated by the deterministic substituted rules. Althou
the KCF structures have long-range order, they are hig
aperiodic. For studying the physical properties related
them, we are not able to find a powerful scheme equiva
to Bloch theorem for periodic structures. What we can do
to use finite structures to approach the infinity. Meanwh
the transfer-matrix method is helpful to obtain the dispers
relations and frequency spectra of the collective excitatio
and boundary conditions should be introduced. Both fr
boundary condition and periodic-boundary condition a

FIG. 4. f (a) spectra for the frequency distributions of the KC
multilayers wherek52, G13/G1251; k53, G16/G1551; k54,
G19/G1851; k55,G22/G2151; k56, G24/G23 5 1, respectively.
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commonly used. With the free-boundary condition, the int
face optical phonon dispersion in the KCF multilayers for
discrete spectra and shows hierarchical characteristic.
ticularly for the KCF multilayers with 1,k<5, which is
quasiperiodic, the phonon dispersion spectra possesses
dual self-similar structures withk11 filial generations
~where k is the number of different incommensurate inte
vals!. With the periodic-boundary condition, the frequenc
of interface optical phonons in the KCF multilayers a
punctuated continuous, and it is expected to display a m
fractal behavior. Multifractal analysis reveals that the dime
sion spectrum of singularitiesf (a) is a smooth function with
a summit f (a0),1. The frequencies do not have an abs
lutely continuous component. Therefore, the frequency
tributions of the interface optical phonons in the KCF m
tilayers are singular continuous and possess multifra
properties. Evidently there are some differences on the in
facial optical phonon spectra of the KCF dielectric multila
ers corresponding to the periodic and free-boundary co
tions. We expect that such a difference originates from
variation of the degrees of freedom in the systems. With
free-boundary condition, the number of the degrees of fr
.
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y
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ta
-
s
ar-
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ti-
-
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al
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e
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dom in the KCF dielectric multilayer system is limited
therefore the phonon dispersion displays the pointlike d
crete spectra. While with the periodic-boundary conditio
the ‘‘multilayer’’ is regarded as an ‘‘unit’’ and repeated pe
riodically. So the number of the degrees of freedom in
system increases significantly. As a result, the phonon
quency distributions of the KCF dielectric multilayers a
punctuated continuously. Generally the results from
periodic-boundary condition have some advantages in s
ing analysis, while the results from the free-boundary con
tion may be easier to compare with experiments. We exp
that Raman scattering investigations on the interface opt
phonons in the KCF dielectric multilayers will provide inte
esting information in a further study.
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