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Structural characterization of three-component Fibonacci Ta/Al multilayer films
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A new class of quasiperiodic superlattice structures called three-component Fibonacci structures has
been studied both theoretically and experimentally. These structures with the characteristic irrational
intervals 4, B, and C can be produced by the substitution rule 4 — AC, C— B, and B— A. The projec-
tion method is applied to deal with the pattern and index of their diffraction spectrum. The analytical
results are compared with the experimental one from three-component Fibonacci Ta/Al superlattices.
The experimental results are in good agreement with the numerical calculations using the model for
compositionally modulated multilayers. Some possible applications of these structures are discussed.

I. INTRODUCTION

In recent years experimental and theoretical studies' ~’
on one-dimensional (1D) aperiodic systems have been
made. The interest stems partly from the discovery of
quasicrystals in 1984 by Schechtman et al.! Although
quasicrystals are perfectly ordered, however, because
there is no translational symmetry, they cannot be de-
scribed in the usual terms of Bravais lattices and the
Bloch theorem is inapplicable. On the other hand, the
wave functions are not all exponentially localized as in
the 1D disordered system. In some senses, quasicrystals
can be regarded as an intermediate case between periodic
and disordered solids. Due to the fact that 1D quasi-
periodic structures are much simpler than three-
dimensional (3D) quasicrystals, and that moreover the
characteristic interval and growth sequence in 1D quasi-
periodic structures can be intentionally chosen, studies
on quasiperiodic superlattices are useful to gain informa-
tion about the physical properties of quasicrystalline ma-
terials.

One of the well-known examples in 1D quasiperiodic
sequences is the Fibonacci sequence. The Fibonacci se-
quence can be produced by repeated application of the
substitution rule 4 — AB and B— A. The ratio of the
two commensurate intervals is equal to the golden mean
r=(V5+1)/2. In 1985, Merlin et al.* reported a reali-
zation of Fibonacci GaAs-AlAs superlattices. Since then,
many experiments on aperiodic superlattices have been
made. To our knowledge, most of these experiments® ™’
were based on Fibonacci superlattices and only a few ex-
periments have been performed on non-Fibonacci struc-
tures. For example, Thue-Morse superlattices were in-
vestigated by Raman scattering® and by high-resolution
x-ray diffraction.® Thue-Morse sequences can be generat-
ed by dual automation and the substitution rule 4 — AB
and B—BA. Their behavior is intermediate between
quasiperiodicity and randomness. The other example is
the investigation on quasiperiodic superlattices reported
by Birch et al.!° Their inflation rule is 4 — A™B and
B — A (where m is an integer). Generally speaking, all
these 1D aperiodic structures consist only of two building
blocks, 4 and B, with different generation sequences.
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Actually, according to the procedure of superlattices,
both the number of building blocks and the growth se-
quence can chosen intentionally, which gives rise to the
construction of new structures of superlattices.

In this paper, the diffraction properties of a new class
of 1D quasiperiodic structures called three-component
Fibonacci structures (3CFS’s) are investigated both
theoretically and experimentally. The 3CFS’s can be gen-
erated by the inflation rule 4 — AC, C—B, and B— A,
where A, B, and C are three building blocks. The ratios
between the intervals dp, d 4 and between the intervals
dc, d 4 are special irrational £ and 7, which satisfy the
equations 1°+7—1=0 and £=7>. In Sec. II, the projec-
tion method is applied to deal with the diffraction pat-
tern. The diffraction vector is given by g =27D (n,
+n,E+n3m), where D is an average superlattice wave-
length and n; (i =1,2,3) are integers. In Sec. III, the fa-
brication and structural characterization of three-
component Fibonacci (3CF) Ta/Al multilayers are re-
ported. The numerical calculations are carried out using
the model for the compositionally modulated multilayers.
Finally, some possible applications are discussed.

II. THEORETICAL MODELS

The procedure to generate what we called three-
component Fibonacci structures involves two steps: first,
we define a basis which includes three distinct building
blocks A4, B, and C. Then, we order these building blocks
in a three-component Fibonacci sequence, i.e., the substi-
tution rule is described by 4 — AC, C—B, and B— A.
Obviously, this rule can be expressed by a 3 X3 matrix M,
that is,

A A
B|—->M|B|, (1)
C C
where
1 01
M=1{1 00
010
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On the other hand, 3CFS can be described as the limit of
generations S, which obeys the rule S, =S, _,+S,_; with
S,={4}, S,={AC}, and S;={ACB}. If N,(A),
N,(B), and N,(C) represent the numbers of 4, B, and C
in S,, respectively, and if two ratios of these numbers are
denoted by #=lim,_ [N,(C)/N,(A4)] and ¢§

J
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=lim,_, ,[N,(B)/N,( A)], the ratios satisfy the following
equations:

r+9=1,
Lp=n:£ .
Then we obtain the values of 17 and &:

()

n=[1/2+1/2(31/27)'2]"3+[1/2—1/2(31/21)"/*]'/*,
=—2/3+[29/54+1/2(31/21)"21'3+[29/54—1/2(31/27)'?]'/* .

It is obvious that 7 and £ are irrational numbers between
0 and 1. One should note, 7 is just the reciprocal of the
characteristic root A (A > 1) of the characteristic equation
x3—x2—1=0 of matrix M.

A low-dimensional quasiperiodic structure may be re-
garded as the projection of a high-dimensional periodic
structure.!">!2 In our case, since the characteristic poly-
nomial of the substitution rule has only one root A of ab-
solute value greater than 1, according to the Bombieri-
Taylor theorem,'® the 3CFS’s are available by the projec-
tion method, i.e., by projecting a three-dimensional
periodic structure along a line. Consider a cubic lattice
with unit spacing in three-dimensional space. Set up an
orthogonal coordinate system, where the point O is the
origin and x; (i =1,2,3) are axes. Let the axis x} be a
projecting line, and the three axes xj, x3, xj with the same
origin O constitute another orthogonal coordinate sys-
tem. Let the angle between x; and x; (i,j =1,2,3) be a;;.
If the projection axis xj satisfies

€OSQ3;:C08a3,:C08a3; = 1:£:7 , (3)

Q5= [ 7 [ R(x},x5)Uglxi,xp,x3)dx’dxy ,

3 3

3
Uo(x1,x5,x3)=Uy | 3, x/cosa;;, 3 x/cosa;y, I, x/cosa;s

i=1 i=1 i=1

It is well known that the diffraction pattern of a lattice is
simply related to the Fourier transformation of a lattice.
Using S(p,k) and M (x},p,k) as the transformation of R
and U, respectively, and according to the convolution
law, we have

Q(x3)= [ [dpdk S(—p,—k)M(x},p,k) . )

Here, we are interested in the Fourier transformation
F(q) of Q(x3), thus the following relation holds:

F(g)= [ [dpdk S(—p,—k)V(g,p,k), (10)
Vig,p,k)=3 8k —2mk(n,,ny,n3))
X8(p—2mp(n,,n,,ny))
X8&(q —2mg(ny,n,,n3)), (1

where £ and 7 are irrational numbers as mentioned
above, then the set of projected points on the axis xj can
construct an aperiodic 3CFS. The three intervals d ,, dp,
and d. of 3CFS satisfy

dA ZdB :dc=Cosa31:cosa3ztcosa33= 1:§:7’ . (4)

Additionally, the cubic lattice may be represented by the
function

Ugl(x,%5,x3)=1/(87) 3 8(x; —i)8(x, —j)8(x3—k) ,
(5)

where the sum is all the integers (i, j, k), and the projec-
tion function is

1 Gf [x]] S 1x3]<vg)
R(x},x5)=

0 (otherwise) . (©6)
Thus, the sum of points of 3CFS can be represented by
(7)
(8)
[
S (p,k)=4sin(pw,)sin(kv,) /(pk) . (12)
Therefore, Eq. (10) can be rewritten as
F(q)= ZS(p(nl,nz,n3),k(n,,nz,n3))
xa(q_q(nl,nz,n3)) 9 (13)
n, cosa,; cosas
k(ny,n,,n3)=|n, cosa,, cosay |, (14)
n3 COSa,3 COSa33
cosall nl cosa31
p(ny,n,,n3)=|cosa;; n, cosas;|, (15)
cosa13 n3 Cosa33
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cosa,; cosa,; n 1
g(ny,ny,ny)=|cosa;, cosa,, n,| . (16)

008013 COS(Z23 ny

The corresponding equation for the orthonormal condi-
tion is

cosQ); C€Osa,; C€Osay,

cosa, €osa,, cosas, |=1. (17

COSa 3 COSA,; COSA33

Considering Eqgs. (4) and (17), it is possible to rewrite Eq.
(16) as

q(ny,ny,ny)=27D Yn,+nyE+nyy), (18)
D:1/608a31=dl+d2§+d317 ) (19)

where n,n,,n; are integers and D is the average lattice
wavelength.

Equation (13) displays clearly the diffraction spectrum
of 3CFS. First, the location of diffraction peaks are
shown and g (n,n,,n;) is the diffraction vector. Accord-
ing to Eq. (18), each peak can be labeled by three indices

n

UP)

nj
Secondly, S(p,k) is related to the intensity of the
diffraction. The intensities are proportional to the square

of the absolute value of S(p,k). It is easy to prove that
the strongest peaks will satisfy

nypnyny=1:6 . (20)

The indices of the strongest peaks correspond to a group
of generalized Fibonacci numbers (a,,a,_,,a,_,). The
numbers {a,} can be defined by

an:an—l+an—3 ’

a,=a,=0, a;=1. 21

Therefore, the strongest peaks reflect the self-similarity of
reciprocal lattices as follows:

q(ay, 13,8, 41,8y +2)
=q(an+27an’an+l)+q(an’an—2’an—1) . (22)
To summarize this section, we conclude that 3CFS can
be obtained by ordering three building blocks 4,B,C in

special sequences, and the peak positions of the lattice
can be labeled by three integers

ny
n2 Py
nj

which are given by Eq. (18). The strongest peaks display
the self-similar hierarchy shown by Eq. (22).

In our treatment of 3CFS, specific irrational values of §
and 7 are assumed, just like the case of the standard Fi-
bonacci sequence in which 7 is assumed to be the golden
mean. Generalization of 3CFS to the case with arbitrary
d 4, dg, and d; can be envisaged. Since a cube and a cu-
boid are topologically equivalent, a nonstandard 3CF lat-
tice, where d 4:dg:d-71:£:m, can be obtained by project-
ing from an orthogonal lattice instead of a cubic lattice,
and Egs. (18), (19), and (22) still hold. Thus the non-
standard 3CF lattice is still quasiperiodic.

III. SAMPLE PREPARATION
AND CHARACTERIZATION

The three-component Fibonacci Ta/Al multilayer films
were fabricated on a glass substrate by dual-target mag-
netron sputtering. The vacuum system was initially
pumped down to 5X107° Torr. During sputtering, the
argon gas pressure was kept constant at 7.0 mTorr. Pure
Ta and Al targets (with diameters of 2.36 in.) were used.
During the process, the substrates can be alternately ro-
tated at three speeds to be exposed to individual magne-
tron sources comprised of Ta and Al targets. The param-
eters of the structure were chosen so that Ta slabs of the
same thickness were separated by three different slabs of
Al In a typical sample, the building blocks 4, B, and C
consisted of (12,7 A Ta)-(36.44 A Al), (12.7 A Ta)-(9.89 A
Al), and (12.7 A Ta)-(21.11 A Al), respectively. The ra-
tios dg /d 4, and d/d 4 were approximately £ and 7, re-
spectively. ~ The average _lattice parameter was
D=d, +&dy +71d-=82.72 A. The sample we studied
consisted of 16 generations of 3CFS. The total sample
thickness was about 1.56 um.

The multilayer films were characterized by x-ray
diffractometry. A 12-kW Rigaku rotating anode x-ray
source [a Cu anode in the high brilliance 0.2X2 mm?
spot mode and a symmetric graphite (002) monochroma-
tor] was used. The measurements were made both near
the Bragg peaks of Ta and Al at 20=38.5° and at the
grazing angles of incidence (0.5°<26<10.5°). Both
types of measurements are significant for the characteri-
zation of these samples. The scattering vector was kept
normal to the surface for this diffraction pattern. In the
high-angle region, the main diffraction peak was found
[shown in Fig. 1(a)] representing the reflections from the
bee Ta(110) and fec Al(111) planes which have an equal
interlayer spacing of a=0.2338 nm. No other main
peaks were found. This means that the sample is dom-
inated by crystalline Ta and Al with a texture of Ta(110)
and Al(111)."* On both sides of the main Bragg
reflection, 3CF satellite peaks were found. Considering
the wave vector

g =47 /\|sin; —sin,| (23)

in the high-angle region (here, 26,=38.5°), the locations
of the satellite peaks are consistent with the result ex-
pressed by Eq. (18) in Sec. II. Thus the pattern from the
3CF samples takes three integers
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FIG. 1. The 0-20 scan of x-ray diffraction in t!le high-angle
region for 3CF Ta/Al multilayer with D =82.72 A. Cu Ka ra-
diation. (a) Measured. (b) Calculated.

ny
ny

nj

to label their positions [shown in Fig. 1(a)].

In the low-angle region, at least 14 harmonics have
been observed [shown in Fig. 2(a)]. These 3CF peaks can
also be indexed and labeled by

n,
n;

nj

Their relative intensities, peak positions, indices, and
scattering vectors are listed in Table I. In Table I there
are a few peaks with high relative intensities. The experi-
mental values of the scattering vector agree remarkably
well with the theoretical results based on Eq. (18). And
the experimentally determined g (n,,n,,n;) satisfies the
Eq. (22). It reflects the self-similarity of the reciprocal
lattice. The diffraction peaks form a dense set. As com-
pared with the results of the periodic Ta/Al structure,'*
five peaks have high relative intensities and the strongest
peak of the 3CFS is not the nearest peak from 6=0. It is
the quasiperiodic order that gives rise to all these phe-
nomena, which may be usable for special cases in soft x-
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FIG. 2. The 6-20 scan of x-ray diffraction in othe low-angle
region for 3CF Ta/Al multilayer with D =82.72 A. Cu Ka ra-
diation. (a) Measured. (b) Calculated.

ray and uv optics. On the other hand, compared with the
results of the Fibonacci Ta/Al structure,!” the locations
of strong peaks in the diffraction pattern of 3CFS are
more complex than those of the Fibonacci Ta/Al struc-
ture. The peaks of 3CFS must be indexed by three in-
tegers while the peaks of Fibonacci structure can be la-
beled only by two integers.

In order to obtain more information, the x-ray-
diffraction patterns of 3CFS were numerically simulated.
The model for the compositionally modulated multilayer
was used. The calculation method was the same we used
for the periodic Ta/Al (Ref. 14) and Fibonacci Ta/Al
(Ref. 15) multilayer, except that the building blocks and
the sequence were different. The results of the fitting cal-
culation are shown in Figs. 1(b) and 2(b) where the degree
of fluctuation in this sample is less than 9% and the
coherence length perpendicular to the film is about 100
nm. The numerically calculated profiles are consistent
with the experimental data for both relative scattering in-
tensities and peak positions.

To conclude, two-target magnetron sputtering can be
used to prepare 3CF Ta/Al superlattices. 3CFS can be
obtained by the concurrent rule 4 — AC, C—B, and
B — A. The satellite peaks in the high-angle region and
the strong peaks in the low-angle region in x-ray
diffraction are analytically shown to occur for scattering
vectors q(n,,ny,ny)=27D "Yn,+&n,+nn;). A 1D
quasiperiodic structure including three building blocks
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TABLE I. Diffraction and calculation data in the low-angle region for a Ta/Al multilayer with

D =82.72 A. Cu Ka radiation.

Index Peak position Observed intensity q =47Ax 'sinf q=27D " Yn,+n,E+n;yn)
(ny,n,n3) 26 (deg) (arb. units) A" A"
001 0.74 44073 5.263X 1072 5.182X 1072
100 1.14 137362 8.108 X 1072 7.595X 1072
110 1.40 29 648 9.957X 1072 0.1113
101 1.96 142364 0.1394 0.1278
111 2.26 221252 0.1607 0.1631
210 2.62 16818 0.1863 0.1873
201 2.80 36361 0.1991 0.2037
211 3.46 8202 0.2461 0.2391
212 4.02 76 107 0.2859 0.2909
203 4.36 6450 0.3100 0.3074
312 5.24 397 0.3726 0.3669
313 6.14 3906 0.4365 0.4187
424 8.04 164 0.5714 0.5818
525 9.98 114 0.7089 0.7096

has been investigated in detail. We have performed a
structural investigation of 3CFS’s which is a 1D quasi-
periodic structure with more than two incommensurate
intervals both theoretically as well as experimentally.
Similar to what was found for Fibonacci Ta/Al multilay-
ers,’> the 3CF Ta/Al multilayer belongs to the quasi-
periodic high-Z and low-Z multilayers. From the
diffraction pattern of 3CF Ta/Al multilayers, there is
more than one strong peak in the low-angle region at a

wavelength A, =1.54 A. The structure may be used as a
mirror with high normal-incidence reflectivity for soft x
rays in synchrotron-radiation sources.
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