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Abstract
On the basis of the tight-binding model, we have studied the energy spectra and
persistent currents (PCs) in one-dimensional k-component Fibonacci (KCF)
mesoscopic rings threaded by a magnetic flux. The KCF structures, which
contain k basic units, can be periodic (if k = 1), quasiperiodic (if 1 < k < 6),
and intermediate cases between quasiperiodicity and disorder (if k � 6). It is
shown that the flux-dependent eigenenergies form ‘band’ structure in the KCF
rings. The subbands possess the hierarchical characteristic with self-similarity
if 1 < k < 6, while if k � 6, there is no obvious self-similarity in the subbands.
In fact, the energy spectra ultimately determine the behaviour of the PCs in the
mesoscopic KCF rings. On one hand, the PC depends on the total energy
bandwidth: the narrower the bandwidth, the smaller the PC. On the other hand,
the parity effect of electrons is disimilar in different KCF rings. As k increases,
there is less likelihood of observing a dramatic change in currents of several
orders of magnitude when one electron is added to or removed from the KCF
rings. If k is large enough, the current behaviour may approach some features
of disordered systems.

1. Introduction

In the past few decades,much attention has been paid to the mesoscopic system,where quantum
coherence can drastically affect the equilibrium properties. One of the interesting phenomena
is the persistent current (PC) in mesoscopic rings threaded by a magnetic flux. Since Büttiker
et al first discussed the quantum interference effect in one-dimensional (1D) metal loops in
1983 [1] there has been a lot of theoretical and experimental work on this subject [2–12]. Study
on the magnitude of PCs is still in progress. In the early experiment carried out by Lévy et al
[2], the PC measured in 107 copper rings was in agreement with the theoretical prediction.
However, the experimental observation made by Chandrasekhar et al [3] indicated that the PC
in a single Au ring is one or two orders of magnitude larger than the value predicted by the
nonintertacing-electron theory. To explain this discrepancy, Kirczenow [4] proposed a model
with electron scattering by grain boundaries. Later, Ben-Jacob et al [5] gave a theoretical
analysis considering both electron–electron interactions and grain boundaries. All of these
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authors obtained the same order of magnitude for the PCs as those observed experimentally
in [3]. More recently, with the development of fabrication techniques, more mesoscopic-scale
experiments on PCs have been reported and introduced new challenges to the theoretical work,
such as the sign of the PC near zero field and the correlation of the PC with the phase coherence
time [6–11].

Generally speaking, the disorder of the system and the electron–electron interaction are
two important factors influencing the magnitude of the PC. It has been theoretically shown
that disorder reduces the magnitude of the PC [13–15], but in correlated disordered rings, the
PC is not reduced if the Fermi level is just at the unscattered state energy level; instead, it
displays free-electron behaviour regardless of the disorder [16]. Meanwhile, the electron–
electron interaction is also complicated. Some reports [17, 18] have indicated that both
long- and short-range electron–electron interactions decrease the PC, while other authors [19–
21] have claimed that the amplitude of the PC is enhanced due to the Coulomb interaction.
More realistically, the ‘spinful’ system and also two- and three-dimensional models have been
taken into account [22–25]. In addition, the importance of the many-channel effect and the
geometrical influence have been recently reported on [26, 27]. However, previous studies
concentrate most on either periodic or disordered systems. Only few studies [28] are based on
the structures between periodic and disordered ones.

One of the well-known examples in 1D quasiperiodic systems is the Fibonacci sequence.
The Fibonacci sequence can be produced by repeating the substitution rules A → AB and
B → A, in which the ratio of the values of the two different elements A and B is equal to
the golden mean τ = (

√
5 + 1)/2. Since Merlin et al [29] reported the first realization of

Fibonacci superlattices, many works have been carried out on the exotic wave phenomena
of Fibonacci systems in x-ray scattering spectra [30, 31], Raman scattering spectra [32, 33],
optical transmission spectra [34–36], and in propagation modes of acoustic waves on corrugated
surfaces [37–39]. It should be noted that the above work is based on the 1D Fibonacci chain
structures, which do not have the ring geometry that we will show in the following text.

In this paper, we have investigated the energy spectra and PCs in mesoscopic rings with
N sites arranged according to k-component Fibonacci (KCF) sequences, which contain k
basic units Ai (i = 1, 2, . . . , k) and can be generated by the substitution rules A1 → A1 Ak ,
Ak → Ak−1, . . . , Ai → Ai−1, . . . , A2 → A1. The KCF structure can be periodic (if k = 1),
quasiperiodic (if 1 < k < 6), and intermediate cases between quasiperiodicity and disorder
(if k � 6). The energy spectra of KCF rings threaded by a magnetic flux are calculated on the
basis of the tight-binding approximation, and the PC behaviours are also discussed.

2. The theoretical model and the numerical method

Firstly let us give a brief introduction to the k-component Fibonacci structures (KCFS).
Consider the substitution S acting on an alphabet of k elements A1, A2, . . . , Ai , . . . , Ak

according to the rules

S




A1 → A1 Ak,

Ak → Ak−1,
...

Ai → Ai−1,
...

A2 → A1



. (1)

Thereafter, these k elements are arranged in a KCF sequence. For example, the three-
component Fibonacci (3CF) structure (k = 3) consists of three kinds of element A1, A2,
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and A3. Based on the substitution rules S: A1 → A1 A3, A3 → A2, and A2 → A1, these
three kinds of element are in sequence as A1 A3 A2 A1 A1 A3 A1 A3 A2 . . .. On the other hand, the
KCFS can also be described as a limit of the generation of sequence C (k)

n . Let C (k)
n = Sn A1;

thus,

C (k)
0 = A1,

C (k)
1 = A1 Ak,

C (k)
2 = A1 Ak Ak−1,

...

C (k)
k−1 = A1 Ak Ak−1 . . . A3 A2,

(2)

and in general

C (k)
n = C (k)

n−1 + C (k)
n−k (n � k).

Define the number of elements in the generation C (k)
n as F (k)

n . It follows that F (k)
n satisfies

F (k)
n = F (k)

n−1 + F (k)
n−k with Fn = n + 1 (n = 0, 1, . . . , k − 1), while we denote the number

of Ai (i = 1, 2, . . . , k) in C (k)
n as N (k)

n (Ai). The ratios of these numbers are expressed as
ηi = limn→∞[N (k)

n (Ai)/N (k)
n (A1)]. It turns out that the set {ηi } satisfies

ηk
k + ηk = 1,

1:ηk = ηk :ηk−1 = · · · = ηi :ηi−1 = · · · = η3:η2.
(3)

Therefore all these ratios ηi = ηk−i+1
k (1 < i � k) are irrational numbers between zero and

unity except η1 = 1. It has been rigorously proven [40] that the KCFS are quasiperiodic when
1 < k < 6; while for k � 6, the KCFS are nonquasiperiodic, but they are still ordered.

Now consider the electronic behaviour in one-dimensional (1D) KCF mesoscopic
rings threaded by a magnetic flux, which contain k kinds of site Ai (i = 1, 2, . . . , k)
and in total N sites arranged according to the KCF sequences. Under the tight-binding
approximation [10, 15, 41] with the on-site model, the Schrödinger equation for a spinless
electron in a 1D aperiodic mesoscopic ring can be written as

tl+1ψl+1 + tlψl−1 + vlψl = Eψl (4)

where l is the site index, tl is the hopping integral, and the site energy vl depends on the site.
We define vl = vi = −v + 2v

k−1 (i − 1), if the lth site is Ai . Equation (4) can be expressed in
the matrix form(

ψl+1

ψl

)
= Tl+1,l

(
ψl

ψl−1

)
(5)

where the transfer matrix

Tl+1,l =
( −(E − vl) −1

1 0

)
.

Here, we simply define tl = −1 and take it as the energy unit.
Because a magnetic flux � threaded through the ring will lead to the twisted boundary

condition for the wavefunctions of the electrons [1], the equation for the global transfer matrix
has the form (

ψN+1

ψN

)
= M

(
ψ1

ψ0

)
≡ ei 2π�/�0

(
ψ1

ψ0

)
, (6)

where M = ∏N
l=1 Tl+1,l and �0 = hc/e is the flux quantum.
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Define the trace of M as χ = 1
2 tr M ; the flux-dependent energy of an electron En(�) in

the mesoscopic ring can be obtained from

χ = cos(2π�/�0). (7)

The PC in the ring contributed from the nth energy level is expressed as

In(�) = −c
∂En(�)

∂�
= −c

∂En

∂χ

∂χ

∂�
= 2πc

�0

sin(2π�/�0)

∂χ/∂En
. (8)

At zero temperature, the number of electrons in the spinless fermion system Ne is equal to the
highest occupied level labelled by the index m. Therefore, the energy of the system follows

E(�) =
m∑

n=1

En(�), (9)

and the total PC in the system satisfies

I =
m∑

n=1

In(�) = 2πc

�0

m∑
n=1

sin(2π�/�0)

∂χ/∂En
. (10)

The response of the PCs to the magnetic flux can be described by the charge stiffness,
which is defined as

D = N

4π2

∂2 E(�)

∂(�/�0)2
. (11)

On the basis of equations (5)–(11), we can carry out the numerical calculations of the
energy spectra and the PCs in the KCF mesoscopic rings.

3. The three-component Fibonacci mesoscopic ring

Firstly we discuss the case of the 3CF ring. According to the above theoretical model, the
PCs are ultimately determined by the flux-dependent energy spectra of the system. Figure 1
shows the energy spectrum of the 3CF ring with generation C (3)

14 (k = 3) when the magnetic
flux �/�0 = 0.25 and v = 0.3, i.e. the three kinds of site energy are v1 = −0.3, v2 = 0 and
v3 = 0.3. There are in total F (3)

14 = 277 eigenenergies (as shown in figure 1) which form four
subbands, and each subband consists of F (3)

11 = 88, F (3)
9 = 41, F (3)

11 = 60, and F (3)
11 = 88

eigenenergies. Furthermore, each subband is composed of a four-band structure. For example,
the inset of figure 1 shows the structure in the first subband. In fact, the energy spectrum of
the 3CF structure is a Cantor-like set with self-similarity, which is quite similar to the optical
phonon dispersion spectrum of the 3CF multilayer [42].

On the basis of the energy spectrum, the behaviour of the PC in the mesoscopic ring can
be obtained from equations (8) and (10). It is shown that the site energy and the electron-
filling number in the system play an important role in the PCs. Figure 2 plots the PC
in the 3CF ring with N = F (3)

14 = 277 for several site energies in two cases with the
electron-filling number Ne = 138 and 139. The maximum PC of the periodic model, i.e.,
I0 = (4πc/N�0) sin(Neπ/N), is taken to be the unit of current. According to figure 2, it is
obvious that when v = 0, the flux-dependent current is just the case for the free electron [13],
and the PC has a sudden transition at the point of�/�0 = 0 (for even Ne) or�/�0 = 0.5 (for
odd Ne). Meanwhile, if v increases, the PC is suppressed and becomes a continuous function
around the point of �/�0 = 0. Increasing v means that the quasiperiodicity in the structure
becomes stronger; then the dependence of the energy level on the flux becomes smoother.
Therefore the current contribution coming from these energy levels will decrease according to
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Figure 1. The flux-dependent energy spectrum of the 3CF ring, where N = F(3)14 = 277, v = 0.3,
and �/�0 = 0.25. The inset shows the affiliation rule.

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-1.0

-0.5

0.0

0.5

1.0  v=0.0
 v=0.1
 v=0.3
 v=0.5
 v infinity

(a) Ne=138

Φ/Φ
0

I/I
0

Φ/Φ
0

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-1.0

-0.5

0.0

0.5

1.0

 

 v=0.0
 v=0.1
 v=0.3
 v=0.5
 v infinity

(b) Ne=139

I/I
0

Figure 2. I/I0 for the PC versus the magnetic flux in the 3CF ring with even and odd electron-filling
number (Ne) under different site energies v, where the total number of sites N = F(3)14 = 277.
(a) Ne = 138; (b) Ne = 139.

equation (8). Consequently, the total current will decrease. This property is similar to that in
the disordered system [13–15].
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It is interesting to consider the sign of the PC, i.e., whether the PC shows diamagnetic or
paramagnetic behaviour near zero field. From the theoretical point of view, the dominant
contribution to the total current always comes from the highest occupied energy level.
Therefore, at the zero-temperature limit, the sign of the PC is determined by the electron
filling number Ne. In the ring with an even number of electrons, the dependence of currents
on magnetic flux (as shown in figure 2(a)) is like that for a paramagnet, whereas in a ring with
an odd number of electrons, the flux-dependent PC (as shown in figure 2(b)) behaves like that
in a diamagnet. (This property is also called the parity effect.) However, due to the Fermi
distribution at finite temperature, electrons can occupy the upper level and, consequently, the
sign of the PC will be changed [15]. In a real experiment, roughly speaking, the sign of the PC
is random, dependent on the number of electrons in the isolated ring and the specific realization
of the random potential [2, 3]. For example, diamagnetic responses of the PC were observed
in copper rings [2] and in an array of gold rings [8]. However, paramagnetic behaviour of the
PC was shown in gold rings made by Chandrasekhar et al [3]. Recent studies suggest that the
sign and also the magnitude of the PC are affected by the phase coherence time τϕ which is
related to the internal (or external) noise [7] and the interaction between conduction electrons
and impurities in the mesoscopic rings [11]. However, further experimental and theoretical
work needs to be done to determine the sign of the PC near zero field.

In order to address the response of the PCs to the magnetic flux, the charge stiffness D is
also calculated on the basis of equation (11). Figure 3 gives the charge stiffness in the 3CF ring
with N = F (3)

14 = 277, where Ne = 138 and 139. It can been seen that D approaches 0.636
as v → 0, which corresponds to the free-electron case. In the system with an even number of
electrons (such as that in figure 3(a)), with v increasing, the response of the PC to the applied
magnetic flux becomes more and more retarded in the cases of 0.3 < �/�0 < 0.5; while
in the cases of 0 < �/�0 � 0.3, the charge stiffness depends greatly on the magnetic flux.
The absolute value of D will approach zero when v is large enough for all magnetic flux. The
behaviour of D in the system with an odd number of electrons (such as that in figure 3(b)) is
similar to the case for the system with an even number of electrons, except that �/�0 has a
shift of 1/2 (due to the parity effect).
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149. 	E = 0.127.

Additionally, the PC will dramatically change when the Fermi level of the system nears
the energy gap. It is seen from figure 1, where Ne = 189, that electrons are filled just to the top
of one energy band, above which there is the largest gap (	E = 0.215). If one more electron
is added, the Fermi energy reaches the bottom of another band. Figure 4(a) demonstrates that
the PC varies dramatically if one electron is added (Ne = 190) or removed (Ne = 188). The
magnitude of the maximum PC is I/I0 ∼ 2.7 × 10−8 in the ring with Ne = 189. But the
magnitude of the current reaches I/I0 ∼ 0.012 (normal value) in the rings with Ne = 190 and
188. On the other hand, if electrons are filled to the top of the band near a smaller gap, the change
in the PC will decrease. For example, in the ring with Ne = 148 (the nearest gap	E = 0.127),
the maximum of the currents has I/I0 ∼ 1.0 × 10−4, while the current takes on the normal
magnitude of about 5.0 × 10−2 if the one electron is added or removed (as shown in figure 4(b)).
Generally, the wider the energy gap, the larger the change in the PC. This can be understood
because the PC is proportional to the slope of the flux-dependent energy level, and at the top
of one subband, the energy level is much smoother than the others. Therefore the PC becomes
much lower when the Fermi level is on the top of the band, and if there is a subtle change in
the electron number of the system, the current will increase by several orders of magnitude.

4. The k-component Fibonacci mesoscopic rings

Figures 5(a)–(f) show the flux-dependent energy spectra of the KCF mesoscopic rings (k = 2,
3, 4, 5, 6, and 10) when v = 0.4 and�/�0 = 0.25. The insets show the corresponding energy
gaps	E = En+1 − En . In the case of 1 < k < 6, the KCF structure is quasiperiodic, and the
energy eigenvalues form k + 1 subbands (as shown in figures 5(a)–(c)). For example, in the
four-component Fibonacci system (k = 4), each subband consists of F (4)

11 = 50, F (4)
8 = 19,

F (4)
10 = 36, F (4)

9 = 26, and F (4)
11 = 50 eigenenergies. It should be noted that the five-component

Fibonacci structure still possesses this property, which is much clearer in the case of the site en-
ergy v = 0.8 than that in figure 5(d) where v = 0.4. As k increases, the hierarchical character-
istic becomes more obscured and there are more gaps in the energy spectra, but those gaps tend
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Figure 5. The flux-dependent energy spectra in KCF rings for k = 2, 3, 4, 5, 6, and 10, where
v = 0.4 and �/�0 = 0.25. The insets show the corresponding energy gaps 	E = En+1 − En .
(a) N = F(2)11 = 233; (b) N = F(3)13 = 189; (c) N = F(4)15 = 181; (d) N = F(5)17 = 185;

(e) N = F(6)19 = 196; (f) N = F(10)
25 = 181.

to be homogeneous (as shown in the insets of figures 5(e)–(f)). In fact when k is large enough,
the energy spectrum of the KCF ring approaches the point spectra of disordered systems.

Now that the PC in a mesoscopic ring is completely determined by the energy spectra, it
is interesting to investigate the behaviour of the PCs in several different KCF systems. It is
found that, with k increasing, there is less likelihood of observing a dramatic transition of the
PCs in the KCF mesoscopic rings when the electron parity is changed. Figure 6 gives the ratio
of the maximum PCs in several KCF rings (2 � k � 10) with the electron numbers Ne + 1 and
Ne , where v = 0.4. Here Ne is the electron-filling number when the Fermi level is just at the
bottom of the largest energy gap in each KCF ring that we discussed. As shown in figure 6,
as k increases, the ratio Imax(Ne + 1)/Imax(Ne) reduces substantially. The reason is that the
biggest energy gap in the energy spectrum of the KCF ring decreases rapidly with increasing
k (see the insets of figures 5(a)–(f)). It can be expected that when k becomes large enough, the
change of the electron parity may not lead to a dramatic transition of the PCs in the KCF rings.

However, when k increases, there is no obvious evolution of the absolute currents in the
KCF rings. Figure 7 gives the series of curves of maximum PC Imax(�) versus even Ne in
the KCF rings for k = 2, 3, 4, 5, 6, and 10, where v = 0.4. (Here the constant 2πc/�0 in
equation (8) is considered as the unit.) It is easy to see that the maximum PC in the KCF ring
does not decrease as k increases. For example, Imax(k = 2) > Imax(k = 6) > Imax(k = 3).
This implies that the PCs may not reduce in the KCF rings although the strength of the
disorder enhances in the structures with k increasing. This phenomenon may be similar to the
result for correlated disordered rings [16]. On the other hand, according to equation (8),
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(2 � k � 10), where v = 0.4. The number of sites N is as same as that in figure 6.

the PC depends on the slope of the flux-dependent energy level. Roughly, those slopes
are related to the bandwidth in the energy spectrum. Figure 8 shows the total bandwidth
B = ∑

n |En(�/�0 = 0)− En(�/�0 = 0.5)| for 2 � k � 10, where v = 0.4. It seems that
in principle, the narrower the total bandwidth, the smaller the magnitude of the overall PC.

5. Summary

We have investigated the energy spectra and the PCs in one-dimensionalKCF mesoscopic rings
threaded by a magnetic flux. The KCF structures can be periodic (if k = 1), quasiperiodic
(if 1 < k < 6), and intermediate cases between quasiperiodicity and disorder (if k � 6). In
the cases of 1 < k < 6, the electron eigenenergies En(�) form a ‘band’ structure with self-
similarity; while in the cases of k � 6, the hierarchical characteristic becomes more obscured.
In fact, the difference in energy spectra gives rise to the variety of PCs in the KCF rings. The
3CF system has been given as an example to clarify how the site energy and the electron-filling
number influence the PC. And it is found that there is no uniform evolution in the absolute PC
in different KCF rings when k increases. Generally, the narrower the bandwidth, the smaller
the PC. However, with k increasing, there is less likelihood of observing a dramatic transition
of the PCs in the KCF mesoscopic rings when the electron parity is changed. We can expect
that when k becomes large enough, the behaviour of the PC in the KCF ring will approach the
disordered cases.
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