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We study the persistent current (PC) in one-dimensional (1D) magnetic-flux threaded mesoscopic
rings, which is constructed according to the random-dimer (RD) model. It is found that the PC varies
significantly when the Fermi energy is changed in the system. The PC can approach the behaviour of free
electrons regardless of the disorder if there is the extended electronic state at the Fermi level; while the
PC can be depressed dramatically if the highest-occupied electronic state is localized or in the
intermediate case between the extended state and localized one. This property provides a possible
explanation to the anomalously large PC observed in some experiments. Furthermore, it is demonstrated
that the electronic delocalization leads to unsuppressed persistent currents and

ffiffiffiffi
N

p
unscattered states

exist around the resonant energy in the RD model from the viewpoint of the PC. The possibility to use 1D
random-dimer mesoscopic rings as quantum-switch devices is also discussed.
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Based on the model with site-diagonal disorder distributed
randomly, Anderson pointed out in 1958 that all electronic
states are exponentially localized even for infinitesimal
disorder in one-dimensional (1D) systems.1) Later, more
theoretical and experimental studies have provided deeper
insights into the problem of the electronic localization.2–17)

It is found that extended states can still exist in the 1D
disordered system. One of the well-known examples is the
random-dimer (RD) model, in which Dunlap et al.2–5)

presented the surprising absence of the electronic localiza-
tion. Since then, much work has been carried out on the
Lyapunov coefficient, transmission coefficient, and wave-
function behavior in the RD model, which have further
confirmed the existence of the delocalization.6–10) Actually,
the delocalization originates from the fact that the defects in
the RD model possess internal symmetry. This short-range
correlated disorder can make the localization length com-
parable to the length of the system at some specific energies.
The short-range spatial correlation among disorders has been
applied to explain the hierarchy of electronic extended states
in some 1D quasiperiodic structures,11,12) and physical
properties of correlated structures have also been stu-
died.13–16) Very recently, the experimental observation of
the delocalization was reported in the random-dimer
semiconductor superlattice.17)

In this paper, we investigate the effect of disorder on the
persistent current (PC) in the 1D mesoscopic ring where two
site energies �a and �b are constructed according to the RD
model. In this case, �a and paired �b (i.e., �b always occurs in
pairs) are randomly distributed on the sites of the ring. It is
well known that Büttiker et al. first predicted the persistent
current in flux-threaded mesoscopic rings,18,19) then this
subject has attracted much attention. The experimental work
on persistent currents has been carried out since last decade.
In the early experiment made by Lévy et al., the persistent
current measured on 107 copper rings is in agreement with
the theoretical prediction under the diffusive case.20) How-
ever, the experimental observation of Chandrasekhar et al.
indicated that the current in single Au ring is one or two
orders of magnitude larger than the value predicted by the

noninteracting theory.21) Some models have been presented
to explain this puzzle.22,23) In recent years, more experi-
mental work came out and brought new challenges to the
theoretical work, such as the sign of the PC near zero field,
the correlation of the PC with the phase coherence time �’
etc.24–27) Generally speaking, the disorder in the system and
the electron–electron interaction play an important role on
the persistent current in mesoscopic rings.28–37) The effect of
electron–electron interaction on the persistent current is
complicated. Some reports have indicated that both long-
range and short-range electron–electron interactions de-
crease the persistent current.28,29) While other authors have
claimed that the amplitude of the PC is enhanced due to the
Coulomb interaction.30–32) As for the effect of disorder, the
general theorem is that the disorder always suppresses the
persistent current.33–35) However, our investigations show
that the effect of disorder to the persistent current in 1D
random-dimer mesoscopic rings is not so simple, because
the electronic states in the system present quite different
characteristics (that is, extended, localized or intermediated).
The persistent current can approach the behavior of free
electrons regardless of the disorder if there is the extended
electronic state at the Fermi level; while the persistent
current can be depressed dramatically if the highest-
occupied electronic state is localized or in the intermediate
case between the extended state and localized one.

Firstly we consider the electronic behavior in the 1D
random-dimer mesoscopic ring threaded by a magnetic flux.
The RD ring contains two kinds of atoms a and b. On the
sites of the ring, the atom a and the paired atoms bb are
arranged randomly, and totally there are N sites in the RD
ring. Under the tight-binding approximation, without elec-
tron–electron interaction, the Schrödinger equation for a
spinless electron in a 1D aperiodic mesoscopic ring can be
written as

ðE � �lÞCl ¼ Vl;lþ1Clþ1 þ Vl;l�1Cl�1 ð1Þ

where Cl is the amplitude of wavefunction on the lth site,
Vl;l�1 is the nearest hopping integral, and the site-energy �l is
taken as �l ¼ �a (or �b) if atom a (or b) occupies the site. In
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this paper, we restrict ourself in the on-site model, that is,
Vl;l�1 is set as a constant V and as the energy unit. Equation
(1) can be expressed in the matrix form

Clþ1

Cl

� �
¼ Mlþ1;l

Cl

Cl�1

� �
; ð2Þ

where the transfer matrix

Mlþ1;l ¼
ðE � �lÞ

V
�1

1 0

0
@

1
A:

Because a magnetic flux � threaded through the ring will
lead to the twisted boundary condition for the wavefunction
of the electrons,33) the equation for the global transfer matrix
has the form as

CNþ1

CN

� �
¼ M

C1

C0

� �
¼ ei2��=�0

C1

C0

� �
; ð3Þ

where M ¼
QN

l¼1Mlþ1;l and �0 ¼ hc=e is the flux quantum.
Once the flux-dependent energy Enð�Þ is obtained from

eq. (3), the persistent current in the ring contributed by the
nth energy level is expressed as

Inð�Þ ¼ �c
@Enð�Þ
@�

; ð4Þ

where c is the velocity of the light. At zero temperature, if
the number of electrons in the spinless fermion system
equals Ne, the total persistent current in the mesoscopic ring
satisfies

Ið�Þ ¼
XNe
n¼1

Inð�Þ: ð5Þ

As well known, under the tight-binding approximation,
the persistent current in periodic (or ordered) mesoscopic
rings is33)

Ið�Þ ¼
�I0

sinð2��=N�0Þ
sinð�=NÞ

odd Ne; �0:5 6
�

�0
< 0:5

� �

�I0
sin½ð�=NÞð2�=�0 � 1Þ	

sinð�=NÞ
even Ne; 0:0 6

�

�0
< 1:0

� �
,

8>>><
>>>:

ð6Þ

where I0 ¼ 4�c
N�0

sinðNe�=NÞ is the persistent current at Fermi
level. For large N, the above expressions approach the free-
electron case

Ið�Þ ¼
�I0

2�

�0
odd Ne; �0:5 6

�

�0
< 0:5

� �

�I0
2�

�0
� 1

� �
even Ne; 0:0 6

�

�0
< 1:0

� �
.

8>>><
>>>:

ð7Þ

In order to make comparison later, we firstly give Figs.
1(a) and 1(b) to illustrate the persistent current in 1D ordered
mesoscopic rings for even Ne and odd Ne, respectively. It
can be seen that the current in Fig. 1(a) is shifted by �0

2
due

to the parity effect, compared with that in Fig. 1(b). The

persistent current has a sudden jump at �
�0

¼ 0 in the case of
even Ne, while for odd Ne, the sudden jump exists at �

�0
¼

�0:5:
Now we consider a 1D random-dimer mesoscopic ring

with N sites which are arranged according to the random-
dimer model as follows:

::: a:::a|ffl{zffl}
S1

bb:::bb|fflfflffl{zfflfflffl}
T1

a:::a|ffl{zffl}
S2

bb:::bb|fflfflffl{zfflfflffl}
T2

::: a:::a|ffl{zffl}
Sj

bb:::bb|fflfflffl{zfflfflffl}
Tj

:::

Sj is the number of atom a in the jth cluster composed of a,
which is random. Tj is the number of atom b in the jth
cluster composed of b, which must be even because b is
inserted with pairs. Site energies �a and �b are assigned
correspondingly.

The global transfer matrix is
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Fig. 1. The persistent current I versus the magnetic flux in 1D ordered mesoscopic rings. The electron-filling number Ne is (a) even and

(b) odd, respectively. I0 and �0 are defined in the text.
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M ¼ 
 
 
 ðMbÞTj ðMaÞSj 
 
 
 ðMbÞT2ðMaÞS2ðMbÞT1ðMaÞS1 ; ð8Þ

where Ma (or Mb) is the matrix Mlþ1;l when �l equals �a
(or �b).

According to the matrices theory, the mth power of the
2� 2 unimodular matrix Mb can be simplified in the form
as11)

ðMbÞm ¼ um�1ð
ÞMb � um�2ð
ÞI; ð9Þ

where 
 ¼ TrðMbÞ
2

(TrðMbÞ is the trace ofMb), and I is the unit
matrix. um is the mth Chebyshev polynomial of the second
order. If j
j 6 1, um can be written as

um ¼ sinðmþ 1Þ�= sin � ð� ¼ arccos
Þ: ð10Þ

For m > 2, if


 ¼ 
g ¼ cos
g�

m

� �
; g ¼ 1; 2; 
 
 
 ;m� 1; ð11Þ

it can be readily obtained from eq. (10) that um�1ð
gÞ ¼ 0

and um�2ð
gÞ ¼ ð�1Þgþ1. Then eq. (9) turns to

ðMbÞm ¼ ð�1ÞgI: ð12Þ

Based on the definition of 
, the energy corresponding to 
g
in eq. (11) is

Eg ¼ �b þ 2V cosðg�=mÞ; g ¼ 1; 2; 
 
 
 ;m� 1: ð13Þ

From eqs. (8)–(13), we can see that if the electronic
energy satisfies E ¼ Eg; the global transfer matrix M is the
product of matrices Ma and ð�1ÞgI. On these resonant
energies E ¼ Eg, the cluster composed of atom b does not
affect the amplitude of the electronic wavefunction (some-
times it causes phase shift with �), and the RD ring looks
like the system only made up of atom a (i.e., an ordered
ring). Since Tj (the number of atom b in the jth cluster) is
even in the RD mesoscopic ring, the resonant energy for the
whole mesoscopic RD ring is Eg ¼ �b according to eq. (13).
It should be noted that the resonant energy is allowed only
when j�a � Egj 6 2V is satisfied. The reason is that E is the
energy of the remaining ordered chain composed of atom a,
so it must meet the equation E � �a ¼ 2V cos k, where k is
the wave vector. Consequently the energy band should be in

the range of [�2V þ �a; 2V þ �a]. Thereafter, the allowed
resonant energy must locate in the interval [�2V þ �a;
2V þ �a], that is, j�a � Egj 6 2V . Obviously, in the case of
random-dimer model, the resonant energy is restricted by
j�a � �bj 6 2V , which is in agreement with the result of
Dunlap et al.3)

Concerning the effect of the disorder on the persistent
current in 1D flux-threaded mesoscopic rings, the commonly
accepted standpoint is that the disorder always strongly
suppresses the persistent current.33–35) This property can be
explained qualitatively based on the energy spectrum of
electrons. For a free-electron model, the nth eigenenergy is
En ¼ � h�

2

2m
½2�
N
ðnþ �

�0
Þ	2 with n ¼ 0;�1;�2; . . .. The energy

curves versus flux �
�0

form intersecting parabolas. Similar to
the perturbation theory in the band-structure problem, the
presence of disorder gives rise to the gap in the energy level
at the intersection point (i.e., at �

�0
¼ 0 and �0:5Þ and the

energy level repels each other. With the strength of disorder
increasing, the ensuing level repulsion enhances and the
flux-dependent energy level becomes much smoother. From
eq. (4), the persistent current is proportional to the slope of
the flux-dependent energy level. Therefore, the persistent
current is intensively reduced by the disorder.

However, the above point can not be held at the resonant
energies in the RD mesoscopic ring, despite the existence of
site-diagonal disorders. At the resonant energy level, the
global transfer matrix is the product of matrices Ma and �I,
that is, the ring recovers the ordered ring that only consists
of a. Naturally it is expected that the persistent current
should be similar to the free-electron-like case. While at the
off-resonant energy level, the persistent current decreases
because the electron is scattered by the impurity b.

The above analysis can be verified by the numerical
calculation on the persistent current in the 1D random-dimer
mesoscopic ring. The following parameters are taken in our
calculation: N ¼ 400, V ¼ 1:0, �a ¼ ��b ¼ 0:4, and the
ratio of the total number of atom a and b in the ring is set to
be q ¼

P
Sj=

P
Tj ¼ 1, which corresponds to the most

disordered case. Based on eq. (3), the flux-dependent
eigenenergy can be obtained. Figure 2(a) plots the energy
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Fig. 2. The flux-dependent energy level of the 1D random-dimer mesoscopic ring, where N ¼ 400, V ¼ 1:0 and �a ¼ ��b ¼ 0:4. (a)

Near the resonant energy E ¼ �b ¼ �0:4; (b) Away from the resonant energy.
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levels which are near the resonant energy E ¼ �b ¼ �0:4,
and Fig. 2(b) shows the flux-dependent eigenenergy which is
far away from the resonant energy. It is easy to find that in
the vicinity of the resonant energy, the energy level has
narrow gaps at �

�0
¼ 0 and �

�0
¼ �0:5 [shown in Fig. 2(a)],

which is quite similar to that in the ordered ring. However,
the energy level shows large gaps and is much smoother if
the energy deviates from the resonant energy [shown in Fig.
2(b)]. Then the persistent current is obtained by calculating
the slope of the energy level according to eqs. (4) and (5).
Figure 3(a) presents the total persistent current when the
Fermi level is closest to the resonant energy E ¼ �b ¼ �0:4.
It is shown that the current is quite large (I=I0max ’ 0:931,
almost without suppression), although the disorder exists in
the system. Compared with Fig. 1(a), it is obvious that the
persistent current in this case is very similar to that of the
free electrons. Here, the electron-filling number Ne ¼ 174.
Actually, if the parameters of the RD ring, such as the length
of the ring and site energy, are changed, the Fermi level may
coincide with the resonant energy for odd Ne. Thus almost
unreduced persistent current similar to Fig. 1(b) can also be
found in the RD ring. On the contrary, if the Fermi level
occupies the off-resonant energy, the persistent current will
be significantly reduced and becomes a ‘‘sinusoidal’’
function of the flux. Only in this case, it follows the general
theory that disorder always reduces the persistent current.
Figures 3(b) and 3(c) illustrate the significantly depressed
PC with different magnitudes.

Combining eq. (2) with the initial condition C0 ¼ 0 and
C1 ¼ 1, it is straightforward to obtain the amplitude of the
electronic wavefunction on each site of the ring. Figures
4(a)–4(c) are the wavefunction on the Fermi level corre-
sponding to the different highest-occupied electrons in Figs.
3(a)–3(c), where �=�0 ¼ 0:25. In Fig. 4(a), the Fermi
energy is closest to the resonant energy E ¼ �b ¼ �0:4; and
the wavefunction is extended. Though it is not Bloch-wave-
like, it propagates through the whole ring without decay.
Figures 4(b) and 4(c) show intermediated and localized
wavefunctions, respectively, when Fermi level deviates from
the resonant energy. Considering Figs. 3(a)–3(c) together

with Figs. 4(a)–4(c), it is reasonable to deduce that the
highest-occupied electronic state determines the magnitude
of the total persistent current Ið�Þ, though Ið�Þ is con-
tributed by all of the filled electrons [see eq. (5)]. Actually,
we have compared the current contributed by the highest
occupied level INeð�Þ with the total current Ið�Þ for
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Fig. 3. The persistent current in the 1D random-dimer mesoscopic ring with the same parameters as Fig. 2. (a) Large persistent current

when Ne ¼ 174 (E ¼ �0:4112192! �0:3971527), similar to that in ordered rings as demonstrated in Fig. 1(a); (b) Suppressed

persistent current when Ne ¼ 134 (E ¼ �0:9708473! �0:9705472); (c) Infinitesimal persistent current when Ne ¼ 114

(E ¼ �1:2035892! �1:2035889).
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Fig. 4. The wavefunction amplitudes on the Fermi level corresponding to

the cases in Figs. 3(a)–3(c), respectively, where �=�0 ¼ 0:25. The

highest-occupied electronic state is (a) extented when Ne ¼ 174 and

E ¼ �0:4043449650423, (b) intermediated when Ne ¼ 134 and
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different electron-filling number Ne, and it is found that
INeð�Þ is the dominant factor determining the magnitude of
Ið�Þ. The reason is that the current contribution from the
levels of n and nþ 1 (n < Ne and Ne � 1) counteracts each
other due to the opposite sign. Therefore, a general
conclusion may be reached that in a 1D random-dimer
mesoscopic ring, if there is the extended electronic state at
the Fermi level, the persistent current is almost not
suppressed and shows the free-electron-like behavior, in
spite of the presence of disorder; while if the electronic state
is intermediated or localized at the Fermi level, the current is
significantly decreased. This conclusion could be general-
ized to any other systems possessing electronic delocaliza-
tion.

It is worthwhile to show the overall behavior of the
persistent current in the 1D random-dimer mesoscopic ring.
In Fig. 5(a), we plot the area enclosed by the curve of the
total persistent current vs flux as illustrated in Fig. 3 for
different electron-filling number Ne. The result shown here is
averaged over 100 samples with the same parameter as
Fig. 3 in order to eliminate sample-dependent effect. In the
case of ordered rings, the total area is 0.5 for arbitrary Ne. It
is found that the area possesses maximum in the case of
Ne ¼ 174, that is, when the Fermi energy is closest to the
resonant energy E ¼ �b. Then the area decays if the Fermi
level deviates from the resonant energy. However, the area
has relatively large magnitude in an interval around E ¼ �b:
In fact, this property is related to the presence of extended
states in the vicinity of the resonant energy in the random-
dimer model. Dunlap et al. argued that around the resonant
energy, there are

ffiffiffiffi
N

p
unscattered states in the RD model

with N sites.3,4) The authors of refs. 7–10 have confirmed
the existence of delocalization in RD models and further
claimed the number of extended states is C

ffiffiffiffi
N

p
(Dunlap et

al. believed C ¼ 1). However, Gangopadhyay and Sen
found that the number of ballistic state is proportional to
N1=3 in large dimer chains.6) In our case, it has been shown
that the highest-occupied electronic state determines the
magnitude of the total persistent currents in 1D mesoscopic
RD rings. It is naturally expected that the area enclosed by
the curve of the total PC can be used as an index of the
delocalization of the states in the system. Actually, if we set
half-decay (i.e., when the area is 0.25) as the scale, the

number of cases where the area exceeds 0.25 is equal to 22,
because the allowed Ne ranges form 164 to 185. This
property is in agreement with the conclusion made by
Dunlap et al. that there are

ffiffiffiffi
N

p
, i.e., 20 (here N ¼ 400)

extended states in the RD model. In order to demonstrate
that the

ffiffiffiffi
N

p
rule is independent of the system sizes, we

perform the similar calculation on the RD rings with N ¼
900 and N ¼ 100 [as shown in Figs. 5(b) and 5(c),
respectively]. According to the above scale, the number of
extended states in the two cases is 32 and 12, respectively.
The results obtained in the three RD rings with different
length have matched well with the

ffiffiffiffi
N

p
scale law. It can be

expected that the
ffiffiffiffi
N

p
rule will fit better in the system with

larger size. Hence,
ffiffiffiffi
N

p
unscattered states indeed exist

around the resonant energy in the RD model from a
completely new viewpoint of the persistent current.

A long-standing puzzle in mesoscopic physics is the large
measured persistent current reported in ref. 21. The ampli-
tude of the oscillatory component corresponds to the
persistent current I ’ ð0:3{2:0ÞevF=L, which is one or two
magnitude larger than the prediction of the noninteracting
theory. It is well known that for a metallic ring with
impurity, the magnitude of the persistent current
I ’ I0l=L ¼ ðevF=LÞl=L ¼ e=�D, where l is the elastic mean
free path, vF is the electron Fermi velocity and �D ¼ L2=D is
the time required for an electron to diffuse a ring whose
perimeter is L (D ¼ vFl is the diffusion constant). By
estimating the mean free path l of Au, the theoretical value
of the persistent current should be about 0:01evF=L, which
contradicts the measured current remarkably. Kirczenow22)

and Ben-Jacob et al.23) once respectively proposed the
theoretical model considering grain boundaries, and all of
them have obtained the same order of magnitude of
persistent currents as observed experimentally. Anyway, it
is interesting to discuss this problem from the viewpoint of
the electronic delocalization. As we have seen in the above
discussion on the 1D random-dimer mesoscopic ring, though
the disorder exists in the system, the PC is indeed possible to
be the order of I0 (I0 ¼ evF=L) due to the electronic
delocalization around the resonant energy. In fact, the mean
free path l is very close to the localization length in 1D
system. If the Fermi level locates in the vicinity of the
resonant energy, the mean free path l is comparable with L,
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Fig. 5. The area enclosed by the curve of the total persistent current vs flux for various Ne in the RD rings, where V ¼ 1:0,

�a ¼ ��b ¼ 0:4. (a) N ¼ 400, (b) N ¼ 900, and (c) N ¼ 100, respectively.
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that is, l � L for 1D disordered system is no longer valid
under this case. Therefore we obtain the large PC with the
same magnitude of I0. It might be possible that ‘‘the resonant
transport’’ causes the persistent current I ’ ð0:3{2:0ÞevF=L
in the experiment of Chandrasekhar et al. The resonant
transport may originate from the specific distribution of
disorder in the ring and the chemical potential of the
material. This assumption deserves the further confirmation
in experiments.

In summary, we have investigated the persistent current in
1D random-dimer mesoscopic rings threaded by a magnetic
flux. Contrary to the general viewpoint that disorder always
reduces the persistent current, it is found that in the random-
dimer ring, nearly unsuppressed currents can exist if the
Fermi level is at the resonant energy, where the electronic
state is extended; while the current is suppressed by the
disorder as expected if Fermi level deviates from the
resonant energy, where the electronic state is intermediated
or localized. Around the resonant energy, large persistent
currents preserve. Correspondingly, the area enclosed by the
PC curve has large amplitude. We have also confirmed theffiffiffiffi
N

p
law of the number of extended states in the 1D random-

dimer system. The property that the persistent current is
nearly unsuppressed due to the electronic delocalization in
RD mesoscopic rings provides a possible explanation to the
anomalously large measured current in the isolated Au
ring.21) The theoretical calculation of the persistent current
in this paper, from a new point of view, presents further
understanding of the electronic localization and delocaliza-
tion in the random-dimer model. It is expected that, with the
development of the fabrication technique, observing the
persistent current in 1D flux-threaded mesoscopic rings
could be one effective tool to explore the nature of electronic
states since the persistent current is quite sensitive to the
electronic state. Furthermore, because of the drastic transi-
tion of the persistent current when the Fermi energy is
changed, it is possible to use the 1D random-dimer
mesoscopic ring as quantum-switch devices.
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