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Abstract – We theoretically investigate the resonant transmission of phonons and step-like
thermal conductance in a weakly nonlinear generalized random n-mer (NGRN) system, where
the impurity cluster with short-range correlation is randomly distributed in the host monatomic
chain, and the atoms are connected by anharmonic potentials. The weakly anharmonic potential
can be reduced to the quasi-harmonic form, which is tuned by external stretching. Due to the
delocalization of phonons, resonant transmission is observed and thermal conductance presents a
“quantized” feature. By applying external stretching on the NGRN system, the number of resonant
modes and their locations are tuned. As a consequence, the “quantized” thermal conductance
becomes tunable in this system. This finding may achieve potential applications in designing
novel thermal-conducting materials.
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Nowadays much attention has been paid to thermal
conductance and thermal-conducting materials [1–3]. On
the one hand, in the integrated circuits (IC), power dissi-
pation becomes one of the limits to the miniaturization of
electronic devices [4]. It is necessary to develop some mate-
rials with high thermal conductance in order to cool the
working devices on IC. On the other hand, minimum ther-
mal conductivity is pursued in thermo-electric systems in
order to improve the efficiency of energy conversion [5,6].
Therefore, high or low thermal-conducting materials
are achieving much attracting applications. One may
naturally try to develop a tunable thermal conductance
system. Tunable nanoscale thermal links have immediate
implications for nano- to macroscale thermal management,
biosystems, and phononic information processing [7]. In
this letter, we demonstrate theoretically a tunable phonon
resonance and thermal conductance in the weakly non-
linear generalized random n-mer systems (NGRN). Based
on the elastic wave equation, we study phononic trans-
mission and thermal conductivity in the NGRN system,
where the impurity cluster with short-range correlation
is randomly distributed in the host monatomic chain,
and the atoms in the chain are connected by anharmonic
potentials. The weakly anharmonic potential can be
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reduced to the quasi-harmonic form, which is tuned by
external stretching. Multiple resonant transmissions are
observed and thermal conductance presents a “quantized”
feature. By stretching or compressing the NGRN system,
the number of resonant modes and their locations are
tuned, thereafter, the “quantized” thermal conductance
becomes tunable in this system.
First, we construct a NGRN system, which contains

a host atom A and a cluster of impurity atoms B=
{B1B2 · · ·Bn}. The host atom A and the impurity cluster
B= {B1B2 · · ·Bn} are randomly arranged in the chain, as

A. . .A
︸ ︷︷ ︸

X1

B. . .B
︸ ︷︷ ︸

Y1

A. . .A
︸ ︷︷ ︸

X2

B. . .B
︸ ︷︷ ︸

Y2

. . .A. . .A
︸ ︷︷ ︸

Xi

B. . .B
︸ ︷︷ ︸

Yi

. . .A. . .A
︸ ︷︷ ︸

Xm

B. . .B
︸ ︷︷ ︸

Ym

,

(1)
where Xj is the number of atom A in the j-th cluster of
A, which is random. And Yj is the number of cluster B
in the j-th cluster of B. All the atoms in the chain are
connected by the anharmonic FPU-β potential [8], which
is well-known in nonlinear systems. Besides, the NGRN
chain is a generalized model based on the random-dimer
system [9].
Now we consider the transport of phonons in the NGRN

chain, which is stretched or compressed. The equation of
atomic motion in the NGRN chain under stretching can
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be expressed as

−mi
d2µi
dt2
= αi−1,i(µi−1−µi−li)+βi−1,i(µi−1−µi−li)3

+αi,i+1(µi+1−µi+ li+1)+βi,i+1(µi+1−µi+ li+1)3, (2)

where mi is the mass of the i-th atom, µi is the vibration
displacement of the i-th atom from its equilibrium, αi,i+1
and βi,i+1 are the strength of the harmonic coupling and
of the anharmonic coupling between the i-th atom and
the (i+1)-th atom, respectively. The coupling parameters
αi,i+1 and βi,i+1 are chosen according to the distribution
of the impurity cluster in the NGRN chain. The parame-
ters li is the stretching length of the i-th atom. Consider
a static stretch fi, we can obtain li and li+1 by the
equations αi−1,ili+βi−1,il

3
i = αi,i+1li+1+βi,i+1l

3
i+1 = fi.

In the case of |µi−1−µi| ≪ li, we can realize the quasi-
harmonic approach. All the terms of (µi−1−µi), whose
power is higher than one, are omitted. Then we can
apply a rotating-wave approximation, and eq. (2) is now
reduced to the quasi-harmonic form as follows:

−miω2µi = αieff (µi−1−µi)+αi+1eff (µi+1−µi), (3)

where αieff is the strength of effective harmonic potential,

i.e., αieff = αi−1,i+3βi−1,il
2
i , and ω is the vibration

frequency. Obviously, the effective harmonic potential
(αieff ) depends on the stretching length (li), which
results from the anharmonic term of the FPU-β potential.
Although nonlinear excitation and mode interaction are
omitted in the quasi-harmonic approach of the NGRN
chain, the effective harmonic potential can be tuned by
external stretching due to the weakly nonlinear coupling
in the NGRN, which cannot be realized in an ordinary
harmonic chain. Equation (3) can be rewritten in a matrix
form as

(
µi+1
µi

)

=

(

1+
αieff−miω

2

αi+1
eff

−α
i
eff

αi+1
eff

1 0

)(
µi
µi−1

)

≡Mi
(
µi
µi−1

)

,

(4)
where Mi is the transfer matrix that correlates the
vibration displacements of adjacent sites µi and µi+1.
Therefore, the atomic vibration in the whole chain is
determined by a product matrix, i.e., a global trans-

fer matrix M =
1∏

i=N

Mi ≡
(
m11 m12
m21 m22

)

, where N is the

number of atoms in the chain. The transmission coefficient
of phonons through the whole chain can be described as

t=
4

2+m211+m
2
12+m

2
21+m

2
22

. (5)

It has been established that the phononic transmission
directly determines the heat transport in the system [3,10].
The thermal conductivity κ is contributed by different
phononic modes of energy transport [11], i.e.,

κ= c
∑

ν

(ξ−2ν,1 + ξ
−2
ν,N )

−1, (6)

where ξν,n =
√
mnUν,n, Uν,1 and Uν,N are the amplitudes

of the ν-th mode at both ends of the chain, respectively,
and c is a coupling constant.
It is worthwhile to investigate how the short-range

correlation affects the transport of phonons in the NGRN
chain. Without loss of generality, we assume that in the
NGRN chain, the masses of atoms are m0 for the atom A,
andm1 for each atom in the clusterB= {B1B2 · · ·Bn}. To
be simplified, the couplings for the connections of A-A and
A-B are assumed to be harmonic, whose strength is set as
α. But the atoms in cluster B are connected by the FPU-β
potential, where α′ and β are the strength of the harmonic
and of the anharmonic coupling, respectively. Thereafter,
the effective potential between the atoms in cluster B is
αeff = α

′+3βl2. Here, l is the stretching length between
neighbor atoms in the cluster B. Obviously, the coupling
strength αeff can be tuned in the NGRN chain by external
stretching. Suppose that the atoms in the impurity cluster
B locate from the first site to the n-th sites in the NGRN
chain, the vibration displacements of neighbor atoms near
the cluster B at a specific frequency can be given by
(
µn+2
µn+1

)

=Mn+1Mn. . .M0

(
µ0
µ−1

)

≡
(
a1 a2
a3 a4

)(
µ0
µ−1

)

.

(7)

Suppose there exists the case that at some frequencies,
the impurity cluster B does not affect the vibration of
the neighbor atoms in the NGRN, i.e., the vibration can
propagate through the chain without decay. Physically,
this situation happens if the behavior of a phonon with
a specific frequency in the NGRN chain is similar to that
in a homogeneous atom chain of the atom A. Therefore,
at those specific frequencies, the phonon dispersion in the
NGRN chain should be the same as that in a homogeneous
atom chain of the atom A, i.e. ωR =

√

4α/m0 sin(qdA/2),
where q is the wave vector and dA is the distance between
neighboring atoms in a homogeneous atom chain of the
atom A. Then we have

2a3

(
m0ω

2
R

2α

)2

+(a1− a4− 4a3)
m0ω

2
R

2α
+ a4+2a3−a1 = 0.

(8)

Once the frequency of the phonon satisfies eq. (8), the
impurity cluster B seems “transparent” to the phonon,
and the vibration can propagate through the chain
without decay. Physically, once the frequency of the
phonon satisfies eq. (8), the phonon can propagate
through the whole NGRN chain, and from this point of
view, the localization-delocalization transition of phonons
takes place at the resonant frequency given by eq. (8).
The delocalization of phonons in the NGRN chain is
similar to the phononic properties in other random
systems with short-range correlation [12,13], which can be
considered as an analogy to the electronic delocalization
in crystals [9,14–17] and also the photonic localization in
dielectric microstructures [18].
According to eq. (8), the resonant frequency of phonons

can be obtained in the NGRN chain. Interestingly, there
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are multiple resonant modes of phonons in this system.
For example, there is one resonant frequency in the dimer
chain (i.e., the NGRN system with n= 2), i.e.,

ω2R =
2χ− γ

m1(m1−m0)
, (9)

where χ≡ β(m1−m0), γ ≡m0(α−αeff ). There are two
resonant frequencies in the trimer chain (i.e., the NGRN
system with n= 3), i.e.,

ω2R =
4χ− γ±

√

4χ2+ γ2

2m1(m1−m0)
. (10)

And there are three resonant frequencies in the 4-mer
chain (i.e., the NGRN system with n= 4), i.e.,

ω2R =
6χ− γ+2

√

6χ2+ γ2 cos
(
f+2pπ
3

)

3m1(m1−m0)
, (11)

where f = arccos

(

9χ2−2γ2

2
√
(6χ2+γ2)3

)

, and p= 0, 1, 2. More

resonant modes of phonons are expected as n increases in
the NGRN chain. Therefore, both the number of resonant
modes of phonons and their locations in the NGRN
systems can be tuned by the external stretching and due
to the fact that each resonant transmission of phonons
will contribute to thermal conductivity in the system, the
thermal conductivity will become tunable in the NGRN
chain.
Based on the above analytical analysis, we have carried

out the numerical calculations on phononic transport in
the NGRN chain. Figure 1 shows the resonant frequency
of phonons in several NGRN chains as a function of the
effective potential (αeff ), which stands for the quasi-
harmonic couplings among the atoms in the impurity
cluster B. We consider two cases: one is the heavy dope
corresponding to m0 <m1, and the other is the light
dope corresponding to m0 >m1. The response of resonant
frequencies on the coupling strength αeff presents a rich
feature. In the generalized random dimer chain, the reso-
nant frequency increases monotonously with increasing
αeff in the case of heavy doping (as shown in fig. 1(a));
while the resonant frequency decreases monotonously
with increasing αeff in the case of light doping (as shown
in fig. 1(b)). Meanwhile in the generalized random trimer
and 4-mer chains, the response of the resonant frequency
on the coupling strength αeff becomes nonlinear (as
shown in fig. 1(c)–(f)), and the nonlinear response
becomes more obvious in light doping than that in heavy
doping. It is demonstrated that the resonant frequency
of phonons can be adjusted by changing the effective
coupling strength of atoms in the NGRN system. Note
that the effective potential (αeff ) is changed by stretching
or compressing the NGRN chain (αeff = α

′+3βl2, where
l is the stretching length). Thereafter, tunable resonant
frequencies of phonons are achieved in the NGRN chain.

Fig. 1: The resonant frequency of phonons (ω2R) as a function of
the effective potential (αeff ) among the atoms in the impurity
cluster in several NGRN chains. In the dimer chain (n= 2):
(a) heavy doping, and (b) light doping. In the trimer chain
(n= 3): (c) heavy doping, and (d) light doping. In the 4-mer
chain (n= 4): (e) heavy doping, and (f) light doping. Note
that in each light doping, the mass of the impurity atom in
B is smaller than that of the host atom A, i.e., m0 = 1.5 and
m1 = 1.1. While in each heavy doping, the mass of the impurity
atom inB is heavier than that of the host atomA, i.e.,m0 = 1.3
and m1 = 1.5. The strength for the connections A-A and A-B
is kept the same as α= 1.0 for each chain.

By using the transfer-matrix method [13], the trans-
mission of phonons in the NGRN chain is calculated
based on eqs. (1)–(5). Besides, the type of boundary
conditions is crucial to determine the transport of the
disordered harmonic chain [11,19]. In our calculation,
the fixed boundary condition is used. Figure 2 presents
the phononic transmission as a function of frequency
through several NGRN chains in the cases of heavy doping
and light doping, respectively. It is obvious that some
transmission peaks indeed appear in the phononic trans-
mission spectra of the NGRN, and these resonant peaks
locate exactly at the resonant frequencies predicted in
eqs. (9)–(11) (as shown in fig. 2(a)–(f)). The resonant
transmissions originate from the delocalization of phonons
in the NGRN chains, which is similar to phononic and
electronic behaviors in other correlated random systems
[13–15]. Furthermore, both the number and the location of
transmission peaks are changed with increasing the effec-
tive potential αeff in the NGRN chain. For instance, by
increasing αeff , one transmission peak can be found and
the resonant frequency can be adjusted in the dimer chains
(as shown in fig. 2(a), (b)). One peak or two peaks can be
observed and the resonant frequencies can be adjusted in
the trimer chains (as shown in fig. 2(c), (d)). One peak, or
two peaks, or even three transmission peaks can be found
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Fig. 2: (Colour on-line) The transmission coefficient (T )
as a function of frequency in several NGRN chains. In the
dimer chain (n= 2 and N = 5819): (a) heavy doping with
m0 = 2.0, m1 = 2.5, α= 1.5, and αeff = 1.0, 1.5, 2.0, respec-
tively; (b) light doping with m0 = 2.5, m1 = 2.0, α= 1.5, and
αeff = 1.0, 1.6, 2.3, respectively. In the trimer chain (n= 3
and N = 8713): (c) heavy doping with m0 = 1.4, m1 = 1.6,
α= 1.5, and αeff = 0.6, 1.0, 1.4, respectively; (d) light doping
with m0 = 1.5, m1 = 1.0, α= 1.3, and αeff = 0.6, 1.0, 1.4,
respectively. In the 4-mer chain (n= 4 and N = 13923):
(e) heavy doping with m0 = 1.3, m1 = 1.5, α= 1.0, and
αeff = 0.6, 1.0, 1.4, 1.8 respectively; (f) light doping with
m0 = 1.6, m1 = 1.5, α= 1.4, and αeff = 0.9, 1.3, 1.7, 2.1,
respectively. Note that the red dotted curves give the resonant
frequency of phonons vs. the effective potential (αeff ), in
order to show that the resonant transmission peaks locate
exactly at the resonant frequencies predicted in eqs. (9)–(11).

in the 4-mer chains, respectively (as shown in fig. 2(e),
(f)). The shifts of transmission peaks with increasing
αeff in fig. 2 are in good agreement with eq. (11). As
we discussed above, by stretching or compressing the
NGRN chain, the effective potential (αeff ) is tuned by
the stretching length. In some sense, the tunable resonant
transmission of phonons is reached in the NGRN chain.
Actually, the delocalization of phonons in NGRN chain

can also be characterized by a zero Lyapunov coefficient
at the resonant frequency. It is known that the Lyapunov
coefficient is an important parameter to characterize the

Fig. 3: (Colour on-line) The Lyapunov coefficient (Γ) as a
function of frequency in several NGRN chains. In the dimer
chain (n= 2): (a) heavy doping; (b) light doping. In the trimer
chain (n= 3): (c) heavy doping; (d) light doping. In the 4-mer
chain (n= 4): (e) heavy doping and (f) light doping. The
parameters in each figure are the same as those in fig. 2. The
red dotted curves also give the resonant frequency of phonons
vs. the effective potential (αeff ), in order to show that the
zero Lyapunov coefficients locate exactly at the resonant
frequencies predicted in eqs. (9)–(11).

physical nature of random matrices [17]. In the NGRN
system, the Lyapunov coefficient can be expressed as [3,13]

Γ =
1

N
ln(m211+m

2
12+m

2
21+m

2
22), (12)

where mij(i, j = 1, 2) is the element of the global matrix
M . According to the Furstenberg theorem [20], the
Lyapunov coefficient exists and converges to its mean
value for sufficiently long chains. In fact, in a vibration
system, the Lyapunov coefficient is inverse to the local-
ization length of phonons. Once the length of the chain is
sufficiently long, zero Lyapunov coefficient corresponds to
delocalized states with infinite localized length. Therefore,
based on the Lyapunov coefficient, we can obtain the
overall behavior of the phonons, i.e. we can know whether
they are localized or delocalized at specific frequencies in
the system. Figure 3 shows the Lyapunov coefficient as
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Fig. 4: Thermal conductance (κ) as a function of frequency
in several NGRN chains, where the effective potential (αeff )
adjusts the thermal conductance. (a) In the dimer chain (n= 2
and N = 5819): m0 = 2.0, m1 = 2.5, α= 1.5, and αeff = 1.4,
1.6, respectively. (b) In the trimer chain (n= 3 and N = 8713):
m0 = 1.4, m1 = 1.6, α= 1.5, and αeff = 1.0, 1.1, respectively.
(c) In the 4-mer chain (n= 4 and N = 13923):m0 = 1.3, m1 =
1.5, α= 1.0, and αeff = 1.2, 1.3, respectively.

a function of the phononic frequency, in several NGRN
chains, in the cases of heavy and light doping. It can be
seen that around the resonant frequencies in each chain,
the Lyapunov coefficient approaches zero even though
fluctuation exists (as shown in figs. 3(a)–(f)). Actually,
fluctuation can be eliminated when the length of the
chain increases. Because the zero Lyapunov coefficient
appears at the resonant frequencies, the localized length
of phonons is infinite at these frequencies. At these modes,
atomic vibration cannot feel “defects” in the chain, and
vibration can propagate through the chain without decay.
Therefore the delocalization of phonons occurs at each
resonant mode in the NGRN chain.
As we know, the thermal conductivity comes from the

contribution of different modes, at which phonons can
propagate through the whole NGRN chain. The tunable
transmission of phonons may lead to a tunable thermal
conductivity in the NGRN system. In order to show
the contribution of each vibration mode to the thermal
conductivity in the NGRN, we try to calculate the
thermal conductivity as a function of frequency, which is
contributed by all the modes below the frequency [3]. This
treatment is similar to evaluate the integrated density of
states. Figure 4 shows the calculated thermal conductivity
of several NGRN chains, which is tuned by the effective
potential (αeff ). It is shown that the thermal conductiv-
ity presents a step-like increase in the NGRN chains (as
shown in fig. 4(a)–(c)). Around each resonant frequency,
the thermal conductivity in the NGRN chain has a jump;
while away from the resonant frequency, the thermal
conductivity almost remains unchanged. This feature
indicates that the localized states merely contribute to
the thermal conductivity. Obviously it agrees with the
result in a random system in fixed-boundary condition,
where the thermal conductivity contributed by the
localized states vanishes in a long system [19]. This
phenomenon indicates that only the delocalized phonons

can contribute to the thermal conductance, thereafter, the
thermal conductance in the NGRN forms a “quantized”
feature as frequency increases [13,21]. There exist multiple
resonant modes of phonons, consequently, the thermal
conductance has multiple jumps and steps in the NGRN
system (as shown in fig. 4(b), (c)). Furthermore, it is found
that the thermal conductivity is very sensitive to the
strength of αeff . First, the thermal conductivity increases
significantly with increasing αeff (as shown in fig. 4(a)).
Secondly, the height of the jump in the thermal conducti-
vity is changed by increasing αeff (as shown in fig. 4(b)).
For example, when αeff increases slightly from αeff = 1.0
to αeff = 1.1 in the trimer chain, the thermal conduc-
tance increases more than 28% (as shown in fig. 4(b)).
In the third, both the number and the width of the steps
in thermal conductivity can be increased by increasing
αeff . For instance, two steps in thermal conductivity are
found when αeff = 1.2, and three steps are obtained when
αeff = 1.3 in the 4-mer chains (as shown in fig. 4(c)).
Now that the effective potential (αeff ) can be changed by
stretching or compressing the NGRN chain, the NGRN
chain provides a possible phononic system with tunable
phonon resonance and tunable thermal conductance. It is
possible to design tunable thermal-conducting materials
based on the NGRN systems.
In summary, we theoretically study the phononic trans-

mission and its influence on the thermal conductance in
the NGRN system. The weak anharmonic potential can
be reduced to the quasi-harmonic form, which is tuned
by external stretching. It is shown that due to the delo-
calization of phonons, resonant transmission is observed
and thermal conductance presents a “quantized” feature.
Both the number of resonant modes and their locations
are controlled by the external stretching or compressing on
the NGRN chain. As a consequence, the “quantized” ther-
mal conductance can be tuned in this nonlinear correlated
random system. This finding may achieve potential appli-
cations in designing novel thermal-conducting materials.
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