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We study in this paper the diffraction spectrum (Fourier transform) of a one-dimensional k-component
Fibonacci structure (KCFS), which contains k different intervals and can be generated by a substitution rule.
Theoretical and numerical calculations based on the geometrical models for atomic KCFS have been made.
The structures with 1<<k=<5 are quasiperiodic, and their Fourier transforms are the sum of weighted &
functions. These diffraction peaks can be indexed by a finite set of base vectors. The structures with £>5,
however, do not possess the Pisot property, and the diffraction spectra consist of neither Bragg peaks, nor
diffuse scattering. They are singularly continuous instead. Multifractal analysis is employed to characterize the
diffraction spectra in the case of k>5. It is shown that the diffraction spectra present scaling properties around
the values of wave vector. Moreover, a dimensional spectrum of singularities associated with the diffraction
spectrum, f(a), demonstrates a genuine multifractality. We conclude that the one-dimensional k-component
Fibonacci structures provide a generic structural model covering periodicity (k=1), quasiperiodicity
(1<k=35), and multifractality between quasiperiodicity and disorder (k>5).

I. INTRODUCTION

In recent years much attention has been paid to one-
dimensional (1D) ordered distributions, especially to the
quasiperiodic systems.!”® Most studies are motivated by the
discovery of quasicrystals.” In theory, investigations on the
nature of ground states of complex incommensurate struc-
tures are stimulating. The interest partly stems from the fact
that quasicrystals are perfectly ordered, the Bloch theorem is
inapplicable since there is no translational symmetry. In
some sense, this problem represents an intermediate case be-
tween periodic and disordered solids. Parallel to the theoreti-
cal development in the field of quasicrystals, advances in
experimental techniques have made it easy to produce artifi-
cial superlattices. Superlattice provides an excellent system
to realize 1D quasiperiodicity. Usually the sample is quasip-
eriodic in the grown direction (z) and periodic in the xy
planes. In 1985, Merlin ez al.® reported the realization of
Fibonacci GaAs-AlAs superlattices. The Fibonacci sequence
starts from A and reproduces according to the substitution
rules A—AB and B—A, in which the ratio of the two in-
commensurate intervals A and B is equal to the golden mean
7=(\/§ +1)/2 . Several experiments®®~10 on aperiodic su-
perlattices have been reported since 1985. Yet very few stud-
ies have been performed so far on the 1D aperiodic structures
with more than two incommensurate intervals.!!

In this paper, we present a theoretical investigation on the
diffraction properties of 1D k-component Fibonacci struc-
tures (KCFS) created by the substitution rule A;—A4,,
Ap—Ar_y, ..., Ai—A |, . ,A3—A,. The projection
method is used to deal with the diffraction behavior of the
KCFS with k=<5, and multifractal analysis is applied to char-
acterize the Fourier spectra of the KCFS with k>5. It is
known that multifractal analysis is a suitable statistical de-
scription for the study of long term dynamical behavior of a
physical system. For example, the invariant probability dis-
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tribution on a strange attractor'? and the spatial distribution
of dissipative regions in a turbulent flow'® can be character-
ized by multifractal measures. The multifractal formalism
relies on the fact that the highly nonuniform probability dis-
tributions arise from the nonuniformity of the system. Our
investigations demonstrate that the diffraction spectra of the
KCFS with k>5 are highly nonuniform intensity distribu-
tions which possess scaling properties of multifractal.

II. PROPERTIES OF THE KCFS IN REAL SPACE

Let us begin with a few definitions of what we called
k-component Fibonacci structures (KCFS). Consider the sub-
stitution 7 acting on an alphabet of k letters A,,A,, ...,
A;, ..., Ay, according to the rules

(A — AA,
Ay — A,

A

i - A‘—I’

i
N b

Az ad Al'

\
This substitution 7 is associated with a matrix M. Each line
of M gives the numbers of letters A;, A,, R P
A, which appear in the transforms of 7(A,), T(A,), ...,
T(A)), ..., T(Ap), respectively. Therefore this matrix can
be expressed as

r -

1 0 0 1
0 0
M=\ . o )
_O o --- 0 1 O_kxk
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TABLE I. Parameters used in the calculations of the diffraction spectra from k-component Fibonacci structures (KCFS). n is the gen-
eration in the KCFS; Nf,k)=N is the total number of the atoms in the geometrical model of the KCFS.

Parameter \Type k=2 k=3 k=4 k=5 k=6 k=7

=8 k=9 k=10 k=20 k=30 k=40 k=50 k=80 k=100

n 22 27 32 36 40 44

47 51 54 84 110 134 154 212 250

N 28657 27201 31422 29244 29548 31200 27428 30624 28711 31261 31410 32560 31760 32284 32250

Then the characteristic polynomial of matrix M is
Pk()\)«‘:)\k—)\k*l— 1. It has been proved that for 1<k=<S5
the substitution 7" possesses the Pisot property.14 This state-
ment means that in all eigenvalues of matrix M there is only
one eigenvalue \ with its absolute value greater than 1."
For k> 35, there is not any Pisot number in all eigenvalues of
M. This feature is related to the structural tilings. The
Bombieri-Taylor theorem'® provides a sufficient condition
for the absence of quasiperiodicity: if there is a Pisot number
in eigenvalues of the substitution matrix, the tiling is quasi-
periodic and hence can be generated by a cut-and-projection
method. Otherwise, the tiling is not quasiperiodic. Back to
our case, the KCFS with 1 <k=35 are quasiperiodic, while
the KCFS with k>5 are nonquasiperiodic.

On the other hand, the KCFS can be described as a limit
of the generation of the sequence C'¥. Let C;")=T "A .
Thus

Cg)k):Al N
C(lk):AlAk’
C(Zk)zAlAkAk—l’

CH =A1A A, ... As3A,,

‘and in general CP=C® ,+C®, . Let NP(A,) denote the
number of A;(i=1,2,...,k) in Cﬁlk). The ratios of these
numbers are defined as 7;=lim,_.[N®(A4,)/NPA)].
The set {#;} satisfies the following equations:

Nt m=1,

L= = =nim=---=n3:1m, (3)

It is easy to prove that all these ratios 7=z '*!

(1<i=k) are irrational numbers between zero and unity ex-
cept ;=1 ; and 7, is just the reciprocal of the leading
eigenvalue Ny of matrix M, 7;,=1/\g.

III. DIFFRACTION SPECTRA

The structural information can be demonstrated more
clearly in reciprocal space. Studies on the diffraction spectra
of the KCFS are based on a geometrical model of atom line.
A one-dimensional geometrical structure is generated by put-
ting atoms on a line. Each pair of the neighboring atoms is
separated by a bond length which varies according to the
sequence of letters. Here, the model of the KCFS with letters
A, A,, .. A;, ..., Ay is associated with k real num-
bers, i.e., the bond lengths lAl’lAz’ <ooslas o1y . Inorder
to avoid disappearance of some atoms in the long run and

eludes a lot of arbitrariness in the model, {l, } can be ex-
pressed by

lAi: n;- (4)

The Fourier transformation of this structure is performed in
the following way. Firstly, the atomic density can be written
as

p<z>=§ 8(z—1z;), (5)

where z; is the position of the jth atom on the line
(zj—-zj,1=lA], or lAz’ ., or lAk; z9=0). By denoting
F' the Fourier amplitude of the above structure which con-

tains the generation C® in the k-component Fibonacci
(KCF) lattice, we have

N
FQ)=2, o™i, (©)
j=1

where N is the number of letters in the generation C'¥

(actually, it is also the number of atoms, or in other words,
the sample size), and Q is the wave vector. The diffraction
intensities associated with these amplitudes can be expressed
as

1
1,)(0)= 3wl FO (). @)

Based on Eq. (7), diffraction spectra of the KCFS can be
calculated. The generations (n) and the total number of at-
oms (Nﬁ,k)) in each sample are listed in Table 1.

Figure 1(a) shows the diffraction spectra of a three-
component Fibonacci (3CF) superlattice in one Brillouin
zone (i.e., one period in reciprocal space). The Fourier trans-.
form of 3CF superlattice is a sum of weighted & functions.
From our discussions in Sec. II, 73 for the 3CFS is a Pisot
number. Therefore the 3CFS is quasiperiodic and can be gen-
erated by projection method. By projecting a cubic lattice
with unit spacing along a line, a 3CF lattice in real space can
be achieved. The Fourier transformation of this lattice indi-
cates that the diffraction vectors have the following analyti-
cal form:!!
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3
2
Q(ny,ny,n3)= 'D—E nini,

i=1

3
D=2 la; ®)
where n; (i=1,2,3) are integers and D is the average lattice
wavelength. It is noteworthy that the strongest peaks reflect
the self-similarity of reciprocal lattices, that is,

Q(an+3 Ap+1 ’an+2) = Q(an+2 sy ’an+1)
+Q(an ’an—Z’anAl)a (9)

where a,, is defined as a,=a,_;+a,_3 witha;=a,=0 and
az=1 . Back to the numerical calculation of the 3CFS, one
can easily find that the strong diffraction peaks illustrated in
Fig. 1(a) can be indexed by three integers [n,n,,n3]
[shown in Fig. 1(a)], and the self-similarity is also satisfied,
for example, Q(1,1,1)=0(1,0,1) + Q(1,0,0).

In fact, Fig. 1(a) is a typical diffraction spectrum of a
quasiperiodic structure. According to Sec. II, the KCFS with
1<k=35 are quasiperiodic. A low-dimensional quasiperiodic
structure may be considered as the projection of high-
dimensional periodic structure.!” Similarly, using the projec-
tion method (see Ref. 14 for details), we can obtain the fol-
lowing diffraction vectors:

Q(nl,n2, e

(10)

where 1<<k=35. The diffraction spectra from the KCFS with
1 <k=35 contain Bragg peaks, each strong diffraction peaks
can be indexed by k integers (n;,n,, ...,n;). The self-
similarity of the structure is displayed by the locus of the
diffraction peaks.

The KCFS with £>5 do not possess the quasiperiodicity.
As k increases, the diffraction spectra of the KCFS become
more and more complicated. Figures 1(b) and 1(c) show the
diffraction spectra of six-component Fibonacci (6CF) and
100-component Fibonacci (100CF) structures, respectively.
Comparing these two plots with Fig. 1(a), one may find that
although discrete diffraction peaks can be found in Fig. 1(b),
they cannot be indexed by integers. Consequently, self-
similarity disappears from these spectra. As a result of in-
crease of k, the diffraction spectra become more compli-
cated. The diffraction spectrum shown in Fig. 1(c) is neither
discrete nor continuous. Actually, it is singular continuous.
These complicated diffraction spectra can only be described
by statistical method up to now, and multifractal analysis
would be a suitable candidate.

IV. MULTIFRACTAL ANALYSIS IN RECIPROCAL SPACE

Multifractal analysis is a tool for characterizing the nature
of a positive measure in a statistical sense.'®~?! By definition,
a positive measure describes how a positive quantity is dis-
tributed on a set which is the support of the measure. If the
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FIG. 1. The Fourier transforms of k-component Fibonacci
(KCF) structures. The parameters for calculation are listed in Table
I. (a) k=3. The 3CF geometrical model consists of 27 generations
and C$ is exampled; (b) k=6. The 6CF geometrical model con-
sists of 40 generations and C%3 is exampled; (c) k=100. The
100CF geometrical model consists of 250 generations and C30” is
exampled.

support of the measure is covered with boxes of size £ and
pi(e) is denoted as the probability (integrated measure) in
the ith box, an exponent (singularity strength) «; can be de-
fined as
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pi(e)~e“i. (11)

If we count the number of boxes N(a)d« where the prob-
ability p; has singularity strength between o and a+da,
then (@) can be loosely defined as the fractal dimension of
the set of boxes with singularity strength «. That is

N(a)da~e¥da. (12)

The f(a) singularity spectrum provides a mathematically
precise and naturally intuitive description set of dimension
f(a) possessing singularity strength. On the other hand, it
should be mentioned that the generalized dimension D, pro-
vides an alternative description of the singular measure. It is
defined as

1 InZfp(e)]?
q —-lim .
q—1

Ine (13)

£—0

D, corresponds to scaling exponents for the gth moments of
the measure.

In the case of diffraction spectrum, the positive quantity is
the Fourier intensity, and the support is reciprocal space, i.e.,
the space of wave vectors Q. A straightforward application
of multifractal formalism requires the evaluation of exact
integral of the intensity measure of the structures with infi-
nite length over small segment of length in the space of wave
vectors. In this case, the computer time for calculation will
increase incrediblely. To solve this problem, an approximate
scheme is chosen.?! Instead of calculating the infinite KCFS,
we only deal with a structure which contains repeating cop-
ies of finite generation, i.e., C;") of the original structure. It is
known that Fourier transform of a periodic structure consists
of Bragg peaks, and the diffraction vectors are

0i=—, (14)

where i covers all the integers, and N=N® is the total num-
ber of letters in C¥. The diffraction amplitudes are

F(Q)
A,s"T‘. (15)
Since the amplitudes of the Fourier transform F ff)(Q) shown
in Eq. (6) are periodic functions of O, we can only consider
the situation in one period of reciprocal space, i.e., one Bril-
louin zone, and the diffraction vectors correspond to i=1,2,

., N.

An essential ingredient in multifractal characterization is
the probability weights p;. Here, p; is denoted as the weight
of the diffraction intensities in Fourier transforms, i.e.,

|Ai|?

PESTIAT 1o

The partition function can then be expressed as
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N

Z(@=2 pl,
£
N
az
! = —= q .

Z'(g)= gz =2, piinp;, (17)

” dzz : q 2
Z'(q)= g = 2 pi(np))?,

where parameter g provides a microscope for exploring dif-
ferent regions of the singular measure. For g>1, Z(g) am-
plifies the more singular regions of p;, while for g<<1 it
accentuates the less singular regions. For g=1 the measure
Z(1) replicates the original measure. The f(a) curve of any
finite sample is therefore available at a local level, i.e., for a
given space of wave vectors Q. The values of a and f(a)
are given by

__ 7'
*T 7 Z(@N"
1 qZ'(q)
and the curvature C of the f(«a) curve at its top is
11 (Z'(0)> Z"(0)
E"l—nﬁ( Z(0)2  Z(0) ) (19)

The generalized dimensions relate to the spectrum of singu-
larity f(a) by Legendre transform shown below:

fle)=aq—(g—1)D,.

d
a(q)= E‘;(q— D,. (20)

In order to check the multifractality of the Fourier inten-
sities of the KCFS, it is essential to investigate the behavior
of the curvature C of the f(a) curve at its top defined by Eq.
(19). Figure 2(a) shows the curvature C against the genera-
tion label n for the 3CF structure. The lowest data point in
the figure corresponds to n=27, i.e., N: (23) =27 201 letters or
atoms as shown in Table I. In the region of large n, the
curvature C decreases almost linearly with a slope
s=—0.036. By the same procedure, a series of slope s can
be obtained for the different KCF structures [shown in Fig.
2(b)]. Figure 2(b) indicates that for 1 <k=<35 the slope of the
plot of curvature C vs generation label », i.e., s, is not equal
to zero. Therefore the curvature C of the f(«a) curve diverges
as the generation number n approaches infinite. Meanwhile,
the f(a) curve shrinks to one point, and the Fourier spec-
trum of the infinite chain is not a multifractal. Actually for
1 <k=15 the Fourier intensity distributions of the KCFS pos-
sess quasiperiodicity. These scale invariant structures can be
characterized via a single -exponent or a finite set of expo-
nents as mentioned in Sec. II.

The situation is different in the case of the KCFS with
k>5. According to Egs. (16)—(18), we got f(«) spectra of
the KCFS for k=6 to 10, 20, 30, 40, 50, 80, and 100. The
parameters used in the calculations are listed in Table I. An
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FIG. 2. (a) Plot of curvature C of f(«) curve of the 3CF struc-
ture against the generation label n. The slope of the dashed line is
5=0.036. (b) Plot of the slope s vs k in the KCFS. k is the number
of incommensurate intervals in the structure.

example is given in Fig. 3(a), which illustrates the f(a)
curves of the 6CF structure and 100CF structure, respec-
tively. From Fig. 3(a) one may find that the data points can fit
perfectly into a smooth curve, which is a characteristic of an
infinite structure. These f(a) curves can be approximately
fitted by the polynomials. For instance, the f(a) spectrum of
the 100CF structure can be formulated by f(«)
=—0.9652+3.677a—1.973a*+0.2184a>. The quantity
f(a) is commonly the dimension of the set of wave vectors
Q in the diffraction spectrum. Around each Q, the intensity
measure scales as

|H(Q+e)—H(Q)|~e%(e—0), 21
where H(Q)=lim,_,..[$I’(Q")dQ’, and I¥ is given by
Eq. (7). It is interesting to note the physical meaning of the
f(a) spectrum of a Fourier transform.

(i) The abscissa ag of the summit of f(a) curve, which
corresponds to g =0, is the strength of a generic singularity.
In some senses, the exponent a characterizes the behavior
of the intensity at a generic wave vector. Obviously
f(ap) =1, because the support of the Fourier transform is the
whole real Q axis. Figure 3(b) shows the strength of the
singularity «q in the KCFS. For k>5, a¢>1 holds, so the
intensity measure of the KCFS with k>5 is a genuine mul-
tifractal.

(ii) The extremes ap;, and a.,, of the abscissa of a
f(a) curve represent the minimum and the maximum of the
singularity exponent a which acts as an appropriate weight

(b) 1.20 . . . : .
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1.16 -",,_ 1
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108 1 1 1 1 1
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FIG. 3. (a) f(a) spectra of the 6CF and 100CF structures, re-
spectively. (b) Plot of the strength of singularity «, in the KCFS,
where k is the number of incommensurate intervals. (c) The plot to
show the dimension of the set of peaks d b in the KCFS, where k is
the number of incommensurate intervals. All the dashed lines are a
guide for the eyes.

in reciprocal space. In fact, ay,=lim,,,.D, and
amax=limq_,_me characterize the scaling properties of the

most concentrated and most rarified region of the intensity
measure respectively. With increasing of the number of in-
commensurate intervals k£ in the KCFS, the value of Aa=
Qmax-min decreases gradually [Fig. 3(a) provides the ex-
amples of k=6 and 100, respectively]. This implies that in-
tensity measure of the KCFS approaches random when &
increases. Actually A @ may be used as a parameter reflecting
the randomness of the intensity measure.

(iii) The dimension of the set of diffraction peaks
d,=f(1), corresponding to a=1. d, represents the dimen-
sion of the set of wave vector Q for which the local singu-



number of incommensurate intervals k

FIG. 4. (a) Plot of the generalized dimension D, as a function of
g for 6CF and 100CF structures, respectively. (b) The information
dimension D, in the KCFS is shown in this plot, where k is the
number of the incommensurate intervals in the KCFS. The dashed
line is a guide for the eyes.

larity exponent « is less than unity. Figure 3(c) illustrates
d, as a function of the number of incommensurate intervals
k in the KCFS. d,<1 for the KCFS with k>5. When k
increases, d, increases exponentially until d, reaches a
maximum (about d,~0.97). Therefore, different KCFS ex-
hibits different distribution of the diffraction peaks. When k
becomes large enough, according to Fig. 3(c), we expect that
the dimension of the set of peaks approaches to a constant
very close to unity.

The generalized dimension D, characterizes the nonuni-
formity of the measure, positive ¢’s accentuate the denser
regions and negative g’s accentuate the rarer ones. Figure
4(a) shows the plot of generalized dimension D, vs g for the
Fourier transforms of the 6CF structure and 100CF structure,
respectively. The plots of D, vs g in Fig. 4(a) correspond to
the plots of f(«) vs « in Fig. 3(a). It has been demonstrated

that D,> D,/ for g<gq (in the same structure). Additionally,
for certain special values of q, one can take D, as the dimen-
sion of a special set, which supports a particular part of the
measure.

(1) Dy for g=0, i.e., Dy=1lim,_,o[InN(e)/In(1/e)], where
N(e) is the number of line segments of size £ to cover the
whole wave vector axis. Obviously, D, is the dimension of
the support as mentioned above, D= f(ay)=1.

(ii) D, for g—1 is the information dimension of the in-
tensity measure. D;=lim,_ o[ — 2 ,p;(e)lnpe)/In(l/e)] ,
where —p;(g)In[p;(&)] is an expression from information
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FIG. 5. (a) The Fourier transform of the 100CF structure
cgfg‘” which consists of 245 generations. (b) f(«) spectrum of the
100CF structure cgfg‘” . (c) Plot of the generalized dimension D, as

a function of ¢ for the 100CF structure C552” .

theory and corresponds to the amount of information associ-
ated with the distribution of p;(g) values. If the value
a(l) is available for g=1, it follows that
fla(1)]=a(1)=D,. The distance of D, to unity is a faith-
ful measure of how singular the Fourier transform is. Figure
4(b) shows the information dimension D; in the KCFS is
less than the dimension of the support Dy, i.e., D;<Dy=1
for the KCFS with k> 5. Therefore, the intensity distribution
of the KCFS with k>35 is definitely a fractal measure.

(iii) D, for g=2 1is the correlation dimension.
D,=lim,_, o[ InZp?(e)/Ing]=lim,_, o[ In(u(e))/Ing],  where
(u(e)) is the average density of the peaks in the wave vector
interval of e=AQ in the intensity measure of the KCFS. We
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have D,(k)>D,(k") in the KCFS if k>k' (for example,
D,~0.71 for k=6, and D,~0.78 for k=10). It has been
demonstrated that when k becomes larger, there are more
peaks occurring in the Fourier transform of the KCFS, and
the diffraction spectra become more complicated.

The above analysis in reciprocal space indicates that the
Fourier transforms of the KCFS possess multifractality only
when k>5. As k increases, these Fourier measures of the
KCFS approach randomness.

Additionally, the diffraction spectrum of KCFS may con-
tain a lot of well-defined singularities with a nonuniform
background. One reason for such a behavior could be the
presence in the structure of numerous motives which are
more or less reproduced all the chain long. Cflk) could be
such a motive. One may find the difference on the diffraction
spectra with different Cﬁ,k). For example, the diffraction
spectrum of the 100CF structure C (215%0) [shown in Fig. 1(c)]
varies from the diffraction spectrum of the 100CF structure
C(z}go) [Fig. 5(a)]. One may also notice their subtle difference
on f(a) spectrum and D, ~q. For the diffraction spectrum
of C512”, f(a) spectrum and D, ~q are shown in Figs. 5(b)
and 5(c). The counterparts of that of C5}” are shown in Fig.
3(a) and Fig. 4(a) respectively. The f(«) curve in Fig. 5(b)
can be fitted by f(a)=—1.004+3.773a—2.076a>
+0.2583°, which is different to that of C3%” . Further
studies on this aspect are underway.

V. CONCLUSION

One-dimensional k-component Fibonacci structures
(KCFS) can be generated by defining k¥ incommensurate in-
tervals and ordering them in special substitution rules. The
diffraction spectra of these structures are obtained from the
Fourier transform of the related atomic chains. Our investi-
gation indicates that the structure with k=1 is periodic, the
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Fourier transform consists of Bragg peaks, which are peri-
odically distributed in reciprocal space. In the region of
1<k=35, the KCFS are quasiperiodic. These structures pos-
sess Pisot property and can also be generated by a projection
method from k-dimensional hyperspace onto a line. Their
diffraction spectra are sum of & functions and the peaks can
be indexed by a finite set of base vectors according to Eq.
(10). In such a scale invariant system, the f(«a) spectrum of
the intensity measure is concentrated to a single point
a=Dy=D,. The KCFS with k>35 are not strictly quasip-
eriodic. These structures usually exhibit complicated diffrac-
tion spectra. The multifractal analysis in reciprocal space re-
veals that these intensity measures can be characterized by a
monotonic declining dependence of D, vs g; « distributes in
a finite range [ @pin, ¥maxl; f(@) turns to be a smooth func-
tion with a summit of Dy=1. Since the strength of singular-
ity « is greater than unity, the Fourier intensity vanishes at
a generic wave vector. So the intensity measure does not
have absolutely continuous component. Therefore, the Fou-
rier transforms of the KCFS with k>5 are singular continu-
ous and possess multifractal properties. Finally, we want to
emphasis that the KCFS provide a generic model which cov-
ers several types of order: periodicity, quasiperiodicity, and
multifractals between quasiperiodicity and randomness. The
diffraction spectra of the KCFS exhibit different character-
izations of Bragg scattering of periodic and quasiperiodic
structures, and the features of singular scattering of non-
Pisot-property KCF structures.
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