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We investigate magnetic-flux-induced persistent currents (PCs) in a one-dimensional nonlinear

mesoscopic ring based on the Frenkel–Kontorova (FK) model. By applying a transfer-matrix

technique, the energy spectra, the PCs, and the Thouless exponent are theoretically obtained. It is

shown that the energy spectrum splits into sub-bands when the on-site energy is gradually increased,

and in the flux-dependent energy spectra, the energy levels show different behaviors over the

transition by breaking of analyticity. Meanwhile, the PC is determined by the magnetic flux, the

on-site energy, and the Fermi level. The increment of the on-site energy leads to a dramatic

suppression of the PC. When the Fermi level is in the vicinity of “band” gaps, the PC is limited

considerably; otherwise, the PC increases by several orders of magnitude. The suppressed PC is

related to the electronic localization of the FK ring, which is described by the Thouless exponents.

Our investigations provide detailed information about the influence of nonlinear structure on the PC

and contribute to its potential application in quantum devices. VC 2011 American Institute of Physics.

[doi:10.1063/1.3562257]

When a conducting ring is threaded by a magnetic flux,

a persistent current (PC) will be induced due to the topologi-

cally determined quantum interference. Since the seminal

proposal of PC by Büttiker et al.,1 considerable attention has

been paid to the PC in one-dimensional (1D) metal or semi-

conductor mesoscopic rings.1–8 In an early experiment con-

ducted by Chandrasekhar et al.,4 the PC measured in a single

Au ring is 1 or 2 orders of magnitude larger than the value

predicted by noninteracting theory. Recently, an experimen-

tal observation of Bluhm et al.5 indicated that the h/e PC in

diffusive rings is in good agreement with theoretical predic-

tions, though its sign and amplitude change between the

rings. Generally, the PC depends on the particular realization

of disorder and thus varies between nominally identical sam-

ples. It has been shown that disorder reduces the magnitude

of the PC,6 but in correlated disordered rings, the PC is not

reduced at a particular Fermi level.7 Meanwhile, periodic

and quasiperiodic systems have also been investigated.8

However, previous studies concentrate mostly on the linear

systems, and few studies are based on the nonlinear systems

such as the Frenkel–Kontorova model.

The Frenkel–Kontorova (FK) model describes a 1D

chain of atoms with harmonic nearest-neighbor interaction

placed in a periodic potential.9 When the mean distance

between consecutive atoms is in an irrational ratio to the pe-

riod of the external potential, the corresponding state is

incommensurate.10 By changing the coupling constant,

Aubry et al.11 demonstrated that the transition from one con-

figuration to another occurs, i.e., the transition by breaking
of analyticity. The FK model has been used to model crystal

dislocation,12 charge density waves,13 vortex transmission,14

and epitaxial monolayers on the crystal surface.15 In this

work, we investigate magnetic-flux-induced PCs in 1D FK

mesoscopic rings. “Band” structures of the electron eigene-

nergies have been formed. PC presents a rich feature depend-

ing on its energy spectrum and Fermi level. The increment

of the amplitude of the on-site energy will lead to a dramatic

suppression of the PC. When the Fermi level reaches a spe-

cific value, a large PC can be observed. The Thouless expo-

nents have also been studied. Our investigations provide

detailed information about the structural influence on PC and

contribute to its potential application in quantum devices.

Consider the electron behavior in a 1D FK mesoscopic

ring threaded by the magnetic flux. In the tight-binding

approximation, the Schrödinger equation for a spinless elec-

tron in a FK ring can be written as

tn;nþ1wnþ1 þ tn;n�1wn�1 þ enwn ¼ Ewn; (1)

where wn is the amplitude of the wavefunction on the nth

site index; tn;n61 is the nearest hopping integral, which is set

to 1 in the following calculation; and the on-site energy en is

taken as en ¼ V cosð2px0
nÞ. fx0

ng is the configuration of an

incommensurate ground state of the FK model. In other

words, fx0
ng minimizes the functional

H ¼
X

n

1
2

xnþ1 � xn � að Þ2þK cos 2pxnð Þ
h i

; (2)

where K is a coupling constant and a is the equilibrium dis-

tance between consecutive atoms. It is well known that for

each irrational a there exists a critical value Kc separating

two configurations of ground state, i.e., the transition by
breaking of analyticity. The largest Kc ¼ 0:02461::: is

achieved when a is equal to the golden mean. In the numeri-

cal calculations, we restrict ourselves to this particular value.
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Equation (1) can also be expressed in the matrix form

wnþ1

wn

� �
¼ Tn

wn

wn�1

� �
: (3)

Here Tn is the transfer matrix that correlates the adjacent site

amplitudes, and it reads

Tn ¼
ðE� enÞ �1

1 0

� �
: (4)

Because the magnetic flux U threaded through the ring leads

to twisted boundary conditions for the wave functions of the

electrons, the equation for the global transfer matrix can be

expressed as

wMþ1

wM

� �
¼ �T

w1

w0

� �
¼ ei2pU=U0

w1

w0

� �
; (5)

where �T ¼
QM

n¼1 Tn is the global transfer matrix, and

U0 ¼ hc=e is the flux quantum. We can calculate the

flux-dependent energy spectra from equation Trð �TÞ
¼ 2 cosð2pU=U0Þ. At zero temperature, if the number of elec-

trons equals ne, the total PC in the ring satisfies

IðUÞ ¼
Xne

h¼1

IhðUÞ ¼ �c
Xne

h¼1

@EhðUÞ
@U

: (6)

According to the above theoretical model, the PCs are ulti-

mately determined by the flux-dependent energy spectra of

the system. Figures 1(a) and 1(d) show the energy spectra

against the amplitude of the on-site potential V in the FK

rings with different values of the coupling constant K. Obvi-

ously, the band splits into sub-bands as V is increased from

zero. When the amplitude of the on-site potential V becomes

larger than a critical value, the energy levels tend to repel

each other. In other words, the energy gap is enlarged by

increasing V, as happens in other systems.16 However the

spectral properties display quite different behaviors for

K � Kc [Fig. 1(a)] and K > Kc [Fig. 1(d)]. The eigenvalues

are evenly spaced above the transition, densely filling the

“bands,” but the distribution of eigenvalues is more frag-

mented below the transition. This feature becomes much

clearer in Figs. 1(b) and 1(e), which present the flux-depend-

ent energy spectra when V ¼ 1:4 and K¼ 0.02 and 0.04,

respectively. Figures 1(c) and 1(f) are the enlargement of the

energy regions around zero corresponding to Figs. 1(b) and

1(e), respectively. It is shown that when K ¼ 0:04, the elec-

tronic gap appears around E ¼ 0. However, there are several

energy levels around E ¼ 0 when K ¼ 0:02. It is well known

that the phase transition by the breaking of analyticity is

manifested by the phonon gap for K > Kc in other sys-

tems.10,17 In fact, the electronic gap appears for K > Kc in

our system with a particular value of V.

Based on the energy spectra, the behavior of the PC in

the FK ring can be obtained. Figures 2(a) and 2(b) plot the

flux-dependent PCs in the FK ring with different amplitudes

of the on-site potential V and different electron-filling num-

bers ne. It is found that the PC is gradually suppressed if V

increases [as shown in Figs. 2(a) and 2(b)]. Increasing V
means that the scattering rate is enhanced, and the depend-

ence of the energy level on the flux becomes smoother [as

shown in Figs. 1(c) and 1(f)]. Thereafter, the current will

decrease according to Eq. (6). On the other hand, the flux-

FIG. 1. The energy spectra of the FK ring, where the total number of atoms

Ntot ¼ 89. (a) and (d) show the spectra vs V with U=U0 ¼ 0:3 when

K¼ 0.02 and K¼ 0.04, respectively. (b) and (e) present the flux-dependent

energy spectra with V¼ 1.4 when K¼ 0.02 and K¼ 0.04, respectively. (c)

and (f) illustrate the enlargement of the region around E ¼ 0 corresponding

to (b) and (e), respectively.

FIG. 2. (Color online) The persistent current (PC) vs the magnetic flux U in

the FK ring, where I0 ¼ ð4pc=NU0Þ sinðnep=NÞ and Ntot ¼ 89. (a) and (b)

show the PC with ne¼ 18 (all lines except the magenta dotted one) and

ne¼ 19 (magenta dotted line) under different amplitudes of on-site potential

V: (a) K¼ 0.02 and (b) K¼ 0.04. (c) and (d) plot the PC under different elec-

tron filling numbers ne, where V¼ 1.4. (c) K¼ 0.02; (d) K¼ 0.04.
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dependent PC is like that in a diamagnet in the FK ring with

even ne, and it behaves like that in a paramagnet in a ring

with odd ne. However, the magnitude of the PC in the FK

ring can be altered by tuning the electron-filling number ne

or the Fermi level. As shown in Figs. 2(c) and 2(d), if the

Fermi level is in the energy sub-band, the PC is unsup-

pressed, and if the Fermi level approaches the edge of the

sub-band, the PC is suppressed dramatically. For example, if

ne is 55, the Fermi level comes to the “top” of a sub-band,

and the PC is suppressed dramatically. Interestingly, in the

FK ring with K ¼ 0:04, the Fermi level that is closest to

E ¼ 0 corresponds to ne¼ 55, while it corresponds to

ne¼ 52 in the ring with K ¼ 0:02. As a result, the PC around

E ¼ 0 decreases sharply in the FK ring for K > Kc compared

with that in the ring for K < Kc.

In order to understand the behavior of the PC in the FK

ring clearly, we have studied the Thouless exponent. The

Thouless exponent is a quantity that describes the localization

of eigenstates.10 For an eigenfunction corresponding to the

eigenenergy Ei, the Thouless exponent is given by cðEiÞ
¼ ð1=NÞ

P
j 6¼i ln Ei � Ej

�� ��.9 cðEiÞ is proportional to the in-

verse of the localization length, i.e., c � 1=n. If c is about the

order of 1/N for a finite chain of length N, the eigenstates are

extended or critical. Otherwise, the eigenstates are localized.

In Fig. 3, we plot c as a function of eigenenergy for different

values of V and K. There are several interesting features. First,

the distribution of the Thouless exponent against the eigene-

nergy Ei forms a “band” structure [as shown in Figs. 3(a)–

3(c)], and the value of the Thouless exponent in the sub-bands

is smaller than that at the sub-band edges. With increasing V,

the tail of the curve is enlarged [see the longitudinal coordi-

nates in Figs. 3(a)–3(c)]. As we know, the Thouless exponent

is proportional to the inverse of the localization length. Obvi-

ously, in the FK ring, the localization length at the vicinity of

the “band” gaps is shorter than that in the “band.” Therefore,

the amplitude of the PC is suppressed when the Fermi level

approaches the edge of the sub-band. Second, the curves are

driven up by increasing the amplitude of the on-site potential

V [as shown in Figs. 3(d)–3(f)]. That is to say, the localization

length is shortened at a particular Fermi level by increasing V.

This feature is helpful when trying to understand the diminish-

ment of PC when V is enlarged. Finally, the Thouless expo-

nent behaves differently for K < Kc and K > Kc. As shown in

Figs. 3(d)–3(f), the curves are smooth when K ¼ 0:02, but the

maps show clumping in the coordinates when K ¼ 0:04. The

reason is that the eigenvalue distribution changes over the

transition at Kc. Moreover, in the FK ring with V¼ 1.4 and

K ¼ 0:02, the Thouless exponent at E ¼ 0 is about 0.03; thus

the localization length n ¼ 1=c � 102, which is about the

order of the size of the FK ring. However, the Thouless expo-

nent at E ¼ 0 for K ¼ 0:04 is almost infinite. Then the PC

around E ¼ 0 decreases sharply, and an electronic gap

appears in the FK ring when K > Kc. Therefore, in the FK

rings, the PC depends on the coupling constant K, the ampli-

tude of the on-site potential V, and the Fermi level in a rather

complicated manner. Large PCs can be observed when the

Fermi level is in the sub-band.
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